Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMJ Open ; 14(6): e081837, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834321

RESUMO

OBJECTIVE: We aimed to evaluate the feasibility and utility of an unsupervised testing mechanism, in which participants pick up a swab kit, self-test (unsupervised) and return the kit to an on-campus drop box, as compared with supervised self-testing at staffed locations. DESIGN: University SARS-CoV-2 testing cohort. SETTING: Husky Coronavirus Testing provided voluntary SARS-CoV-2 testing at a university in Seattle, USA. OUTCOME MEASURES: We computed descriptive statistics to describe the characteristics of the study sample. Adjusted logistic regression implemented via generalised estimating equations was used to estimate the odds of a self-swab being conducted through unsupervised versus supervised testing mechanisms by participant characteristics, including year of study enrolment, pre-Omicron versus post-Omicron time period, age, sex, race, ethnicity, affiliation and symptom status. RESULTS: From September 2021 to July 2022, we received 92 499 supervised and 26 800 unsupervised self-swabs. Among swabs received by the laboratory, the overall error rate for supervised versus unsupervised swabs was 0.3% vs 4%, although this declined to 2% for unsupervised swabs by the spring of the academic year. Results were returned for 92 407 supervised (5% positive) and 25 836 unsupervised (4%) swabs from 26 359 participants. The majority were students (79%), 61% were female and most identified as white (49%) or Asian (34%). The use of unsupervised testing increased during the Omicron wave when testing demand was high and stayed constant in spring 2022 even when testing demand fell. We estimated the odds of using unsupervised versus supervised testing to be significantly greater among those <25 years of age (p<0.001), for Hispanic versus non-Hispanic individuals (OR 1.2, 95% CI 1.0 to 1.3, p=0.01) and lower among individuals symptomatic versus asymptomatic or presymptomatic (0.9, 95% CI 0.8 to 0.9, p<0.001). CONCLUSIONS: Unsupervised swab collection permitted increased testing when demand was high, allowed for access to a broader proportion of the university community and was not associated with a substantial increase in testing errors.


Assuntos
Teste para COVID-19 , COVID-19 , SARS-CoV-2 , Manejo de Espécimes , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Feminino , Masculino , Adulto , Universidades , Teste para COVID-19/métodos , Teste para COVID-19/estatística & dados numéricos , Pessoa de Meia-Idade , Adulto Jovem , Manejo de Espécimes/métodos , Estudos de Coortes , Washington/epidemiologia , Autoteste , Adolescente , Idoso , Pandemias , Estudos de Viabilidade
2.
Vaccine ; 42(6): 1332-1341, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38307746

RESUMO

Vaccine effectiveness (VE) studies utilizing the test-negative design are typically conducted in clinical settings, rather than community populations, leading to bias in VE estimates against mild disease and limited information on VE in healthy young adults. In a community-based university population, we utilized data from a large SARS-CoV-2 testing program to estimate relative VE of COVID-19 mRNA vaccine primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection from September 2021 to July 2022. We used the test-negative design and logistic regression implemented via generalized estimating equations adjusted for age, calendar time, prior SARS-CoV-2 infection, and testing frequency (proxy for test-seeking behavior) to estimate relative VE. Analyses included 2,218 test-positive cases (59 % received monovalent booster dose) and 9,615 test-negative controls (62 %) from 9,066 individuals, with median age of 21 years, mostly students (71 %), White (56 %) or Asian (28 %), and with few comorbidities (3 %). More cases (23 %) than controls (6 %) had COVID-19-like illness. Estimated adjusted relative VE of primary series and monovalent booster dose versus primary series only against symptomatic SARS-CoV-2 infection was 40 % (95 % CI: 33-47 %) during the overall analysis period and 46 % (39-52 %) during the period of Omicron circulation. Relative VE was greater for those without versus those with prior SARS-CoV-2 infection (41 %, 34-48 % versus 33 %, 9 %-52 %, P < 0.001). Relative VE was also greater in the six months after receiving a booster dose (41 %, 33-47 %) compared to more than six months (27 %, 8-42 %), but this difference was not statistically significant (P = 0.06). In this relatively young and healthy adult population, an mRNA monovalent booster dose provided increased protection against symptomatic SARS-CoV-2 infection, overall and with the Omicron variant. University testing programs may be utilized for estimating VE in healthy young adults, a population that is not well-represented by routine VE studies.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto Jovem , Humanos , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Universidades , SARS-CoV-2 , RNA Mensageiro
3.
Nat Commun ; 13(1): 5240, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068236

RESUMO

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P = 0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8), and a 1.07 (95% confidence interval: 0.58, 1.57; P < 0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Genoma Viral/genética , Genômica , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA