Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1419748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040103

RESUMO

Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome is a rare genetic disorder characterized by variable immunodeficiency. More than half of the affected individuals show mild to severe intellectual disability at early onset. This disorder is genetically heterogeneous and ZBTB24 is the causative gene of the subtype 2, accounting for about 30% of the ICF cases. ZBTB24 is a multifaceted transcription factor belonging to the Zinc-finger and BTB domain-containing protein family, which are key regulators of developmental processes. Aberrant DNA methylation is the main molecular hallmark of ICF syndrome. The functional link between ZBTB24 deficiency and DNA methylation errors is still elusive. Here, we generated a novel ICF2 disease model by deriving induced pluripotent stem cells (iPSCs) from peripheral CD34+-blood cells of a patient homozygous for the p.Cys408Gly mutation, the most frequent missense mutation in ICF2 patients and which is associated with a broad clinical spectrum. The mutation affects a conserved cysteine of the ZBTB24 zinc-finger domain, perturbing its function as transcriptional activator. ICF2-iPSCs recapitulate the methylation defects associated with ZBTB24 deficiency, including centromeric hypomethylation. We validated that the mutated ZBTB24 protein loses its ability to directly activate expression of CDCA7 and other target genes in the patient-derived iPSCs. Upon hematopoietic differentiation, ICF2-iPSCs showed decreased vitality and a lower percentage of CD34+/CD43+/CD45+ progenitors. Overall, the ICF2-iPSC model is highly relevant to explore the role of ZBTB24 in DNA methylation homeostasis and provides a tool to investigate the early molecular events linking ZBTB24 deficiency to the ICF2 clinical phenotype.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fenótipo , Doenças da Imunodeficiência Primária , Proteínas Repressoras , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças da Imunodeficiência Primária/genética , Proteínas Repressoras/genética , Proteínas Repressoras/deficiência , Metilação de DNA , Síndromes de Imunodeficiência/genética , Masculino , Mutação , Feminino , Face/anormalidades , Proteínas Nucleares
2.
Biomolecules ; 13(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136588

RESUMO

Parent-of-origin-dependent gene expression of a few hundred human genes is achieved by differential DNA methylation of both parental alleles. This imprinting is required for normal development, and defects in this process lead to human disease. Induced pluripotent stem cells (iPSCs) serve as a valuable tool for in vitro disease modeling. However, a wave of de novo DNA methylation during reprogramming of iPSCs affects DNA methylation, thus limiting their use. The DNA methyltransferase 3B (DNMT3B) gene is highly expressed in human iPSCs; however, whether the hypermethylation of imprinted loci depends on DNMT3B activity has been poorly investigated. To explore the role of DNMT3B in mediating de novo DNA methylation at imprinted DMRs, we utilized iPSCs generated from patients with immunodeficiency, centromeric instability, facial anomalies type I (ICF1) syndrome that harbor biallelic hypomorphic DNMT3B mutations. Using a whole-genome array-based approach, we observed a gain of methylation at several imprinted loci in control iPSCs but not in ICF1 iPSCs compared to their parental fibroblasts. Moreover, in corrected ICF1 iPSCs, which restore DNMT3B enzymatic activity, imprinted DMRs did not acquire control DNA methylation levels, in contrast to the majority of the hypomethylated CpGs in the genome that were rescued in the corrected iPSC clones. Overall, our study indicates that DNMT3B is responsible for de novo methylation of a subset of imprinted DMRs during iPSC reprogramming and suggests that imprinting is unstable during a specific time window of this process, after which the epigenetic state at these regions becomes resistant to perturbation.


Assuntos
Síndromes de Imunodeficiência , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Mutação , Síndromes de Imunodeficiência/genética , Impressão Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA