Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 29(3): 613-623, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29300463

RESUMO

Mucosal immune responses are in the first line of defense against most infections and protective mucosal immunity can be achieved by mucosal vaccination. However, mucosal tolerance and physicochemical features of the mucosal environment pose challenging obstacles to the development of mucosal vaccines. Vaccine formulations must be designed to enhance stability at the mucosae and incorporate features that induce innate immunity at mucosal inductive sites. To face these challenges, a number of novel delivery systems for targeting of mucosal vaccines to specific mucosal locations have been developed. In addition, specific mucosal immune cell targeting can potentially be achieved with ligand-antigen bioconjugates, in particular, those directed to specific receptors expressed on Microfold (M) cells, mucosal epithelial cells, or mucosal antigen presenting cells (APCs). In this topical review, targeted strategies to enhance the effectiveness of mucosal vaccines are addressed, and obstacles to the design and progression of effective ligand-mediated mucosal vaccines are highlighted.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Mucosa/imunologia , Vacinação/métodos , Vacinas/administração & dosagem , Animais , Células Apresentadoras de Antígenos/imunologia , Células Epiteliais/imunologia , Humanos , Imunidade , Ligantes , Mucosa/citologia , Vacinas/química , Vacinas/imunologia
2.
iScience ; 27(3): 109030, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361630

RESUMO

Fungal ß-glucans are major drivers of trained immunity which increases long-term protection against secondary infections. Heterogeneity in ß-glucan source, structure, and solubility alters interaction with the phagocytic receptor Dectin-1 and could impact strategies to improve trained immunity in humans. Using a panel of diverse ß-glucans, we describe the ability of a specific yeast-derived whole-glucan particle (WGP) to reprogram metabolism and thereby drive trained immunity in human monocyte-derived macrophages in vitro and mice bone marrow in vivo. Presentation of pure, non-soluble, non-aggregated WGPs led to the formation of the Dectin-1 phagocytic synapse with subsequent lysosomal mTOR activation, metabolic reprogramming, and epigenetic rewiring. Intraperitoneal or oral administration of WGP drove bone marrow myelopoiesis and improved mature macrophage responses, pointing to therapeutic and food-based strategies to drive trained immunity. Thus, the investment of a cell in a trained response relies on specific recognition of ß-glucans presented on intact microbial particles through stimulation of the Dectin-1 phagocytic response.

3.
Elife ; 112022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36173104

RESUMO

Macrophages are a highly adaptive population of innate immune cells. Polarization with IFNγ and LPS into the 'classically activated' M1 macrophage enhances pro-inflammatory and microbicidal responses, important for eradicating bacteria such as Mycobacterium tuberculosis. By contrast, 'alternatively activated' M2 macrophages, polarized with IL-4, oppose bactericidal mechanisms and allow mycobacterial growth. These activation states are accompanied by distinct metabolic profiles, where M1 macrophages favor near exclusive use of glycolysis, whereas M2 macrophages up-regulate oxidative phosphorylation (OXPHOS). Here, we demonstrate that activation with IL-4 and IL-13 counterintuitively induces protective innate memory against mycobacterial challenge. In human and murine models, prior activation with IL-4/13 enhances pro-inflammatory cytokine secretion in response to a secondary stimulation with mycobacterial ligands. In our murine model, enhanced killing capacity is also demonstrated. Despite this switch in phenotype, IL-4/13 trained murine macrophages do not demonstrate M1-typical metabolism, instead retaining heightened use of OXPHOS. Moreover, inhibition of OXPHOS with oligomycin, 2-deoxy glucose or BPTES all impeded heightened pro-inflammatory cytokine responses from IL-4/13 trained macrophages. Lastly, this work identifies that IL-10 attenuates protective IL-4/13 training, impeding pro-inflammatory and bactericidal mechanisms. In summary, this work provides new and unexpected insight into alternative macrophage activation states in the context of mycobacterial infection.


Assuntos
Interleucina-10 , Interleucina-13 , Animais , Citocinas/metabolismo , Glucose/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Lipopolissacarídeos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Oligomicinas , Fosforilação Oxidativa
4.
RSC Chem Biol ; 2(4): 1004-1020, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458822

RESUMO

Protein aggregation in biotherapeutics has been identified to increase immunogenicity, leading to immune-mediated adverse effects, such as severe allergic responses including anaphylaxis. The induction of anti-drug antibodies (ADAs) moreover enhances drug clearance rates, and can directly block therapeutic function. In this review, identified immune activation mechanisms triggered by protein aggregates are discussed, as well as physicochemical properties of aggregates, such as size and shape, which contribute to immunogenicity. Furthermore, factors which contribute to protein stability and aggregation are considered. Lastly, with these factors in mind, we encourage an innovative and multidisciplinary approach with regard to further research in the field, with the overall aim to avoid immunogenic aggregation in future drug development.

5.
Nanoscale ; 12(20): 11192-11200, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32407430

RESUMO

Graphene-based materials are of increasing interest for their potential use in biomedical applications. However, there is a need to gain a deeper understanding of how graphene modulates biological responses before moving towards clinical application. Innate immune training is a recently described phenomenon whereby cells of the innate immune system are capable of being programmed to generate an increased non-specific response upon subsequent challenge. This has been well established in the case of certain microbes and microbial products. However, little is known about the capacity of particulate materials, such as pristine graphene (pGr), to promote innate immune training. Here we report for the first time that while stimulation with pGr alone does not directly induce cytokine secretion by bone-marrow derived macrophages (BMDMs), it programs them for enhanced secretion of proinflammatory cytokines (IL-6, TNF-α) and a concomitant decrease in production of the regulatory cytokine, IL-10 after Toll-like receptor (TLR) ligand stimulation. This capacity of pGr to program cells for enhanced inflammatory responses could be overcome if the nanomaterial is incorporated in a collagen matrix. Our findings thus demonstrate the potential of graphene to modulate innate immunity over long timescales and have implications for the design and biomedical use of pGr-based materials.


Assuntos
Fulerenos/farmacologia , Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Monocinas/imunologia , Receptores Toll-Like/imunologia , Animais , Fulerenos/química , Macrófagos/citologia , Camundongos
6.
Biochem Pharmacol ; 146: 23-41, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893617

RESUMO

It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential.


Assuntos
Carboidratos/química , Carboidratos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Humanos , Terapia de Imunossupressão , Inflamação
7.
ACS Chem Biol ; 12(8): 1969-1979, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28692249

RESUMO

Tuberculosis is the leading infectious cause of mortality worldwide. The global epidemic, caused by Mycobacterium tuberculosis, has prompted renewed interest in the development of novel vaccines for disease prevention and control. The cell envelope of M. tuberculosis is decorated with an assortment of glycan structures, including glycolipids, that are involved in disease pathogenesis. Phenolic glycolipids and the structurally related para-hydroxybenzoic acid derivatives display potent immunomodulatory activities and have particular relevance for both understanding the interaction of the bacterium with the host immune system and also in the design of new vaccine and therapeutic candidates. Interest in glycobiology has grown exponentially over the past decade, with advancements paving the way for effective carbohydrate based vaccines. This review highlights recent advances in our understanding of phenolic glycans, including their biosynthesis and role as virulence factors in M. tuberculosis. Recent chemical synthesis approaches and biochemical analysis of synthetic glycans and their conjugates have led to fundamental insights into their roles in host-pathogen interactions. The applications of these synthetic glycans as potential vaccine candidates are discussed.


Assuntos
Mycobacterium tuberculosis/fisiologia , Polissacarídeos/metabolismo , Tuberculose/microbiologia , Fatores de Virulência/metabolismo , Cápsulas Bacterianas/química , Parede Celular/química , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Fenóis/química , Fenóis/metabolismo , Polissacarídeos/química , Fatores de Virulência/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA