Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904854

RESUMO

Our unique multiplexed imaging assays employing FRET biosensors have previously detected that γ-secretase processes APP C99 primarily in late endosomes and lysosomes in live/intact neurons. Moreover we have shown that Aß peptides are enriched in the same subcellular loci. Given that γ-secretase is integrated into the membrane bilayer and functionally links to lipid membrane properties in vitro, it is presumable that γ-secretase function correlates with endosome and lysosome membrane properties in live/intact cells. In the present study, we show using unique live-cell imaging and biochemical assays that the endo-lysosomal membrane in primary neurons is more disordered and, as a result, more permeable than in CHO cells. Interestingly, γ-secretase processivity is decreased in primary neurons, resulting in the predominant production of long Aß42 instead of short Aß38. In contrast, CHO cells favor Aß38 over the Aß42 generation. Our findings are consistent with the previous in vitro studies, demonstrating the functional interaction between lipid membrane properties and γ-secretase and provide further evidence that γ-secretase acts in late endosomes and lysosomes in live/intact cells.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Cricetinae , Animais , Cricetulus , Peptídeos beta-Amiloides/química , Endossomos , Lisossomos , Lipídeos
2.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199815

RESUMO

Genome wide association study (GWAS) uncovered Alzheimer's disease (AD) risk genes linked to the endo-lysosomal pathway. This pathway seems to be the gateway of protein aggregates, such as tau and α-synuclein, to the cytoplasm. Furthermore, we and others reported that the amyloid precursor protein (APP) C99 is predominantly processed by γ-secretase in the endo-lysosomal compartments, and ß-amyloid (Aß) peptides are enriched in the same subcellular loci. While the role(s) of APP/Aß in the endo-lysosomal pathway has not been fully established, a recent study reported that Aß, in particular Aß42, inhibits cathepsin D (CTSD) activity. Here, we show using a cell-free in vitro assay that Aß42 also blocks cathepsin B (CTSB) activity. Furthermore, we uncovered that the autocatalytic processing (i.e., conversion of single chain to heavy/light chains) of CTSB and CTSD is accelerated in APP-deficient cells compared with wild-type controls. Taken together, our findings further support the negative regulation of cathepsins by Aß.


Assuntos
Peptídeos beta-Amiloides , Estudo de Associação Genômica Ampla , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/genética , Projetos de Pesquisa
3.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352497

RESUMO

γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture . Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential "cell non-autonomous" regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA