Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
PLoS Pathog ; 19(2): e1011125, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787339

RESUMO

Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.


Assuntos
Proteínas do Capsídeo , Vírus da Encefalite Transmitidos por Carrapatos , Proteínas do Capsídeo/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/genética , Montagem de Vírus , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Membrana/metabolismo , Lipídeos , Ligação Proteica
3.
Proc Natl Acad Sci U S A ; 119(25): e2202295119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696574

RESUMO

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.


Assuntos
Cavéolas , Proteínas de Ligação a RNA , Cavéolas/química , Caveolina 1/química , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/química , Domínios Proteicos , Transporte Proteico , Proteínas de Ligação a RNA/química , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 117(13): 7471-7481, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170013

RESUMO

Eps15-homology domain containing protein 2 (EHD2) is a dynamin-related ATPase located at the neck of caveolae, but its physiological function has remained unclear. Here, we found that global genetic ablation of EHD2 in mice leads to increased lipid droplet size in fat tissue. This organismic phenotype was paralleled at the cellular level by increased fatty acid uptake via a caveolae- and CD36-dependent pathway that also involves dynamin. Concomitantly, elevated numbers of detached caveolae were found in brown and white adipose tissue lacking EHD2, and increased caveolar mobility in mouse embryonic fibroblasts. EHD2 expression itself was down-regulated in the visceral fat of two obese mouse models and obese patients. Our data suggest that EHD2 controls a cell-autonomous, caveolae-dependent fatty acid uptake pathway and imply that low EHD2 expression levels are linked to obesity.


Assuntos
Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Ácidos Graxos/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Traffic ; 21(1): 181-185, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448516

RESUMO

Caveolae are an abundant, but enigmatic, plasma membrane feature of vertebrate cells. In this brief commentary, the authors attempt to answer some key questions related to the formation and function of caveolae based on round-table discussions at the first EMBO Workshop on Caveolae held in France in May 2019.


Assuntos
Cavéolas , Caveolinas , Animais , Membrana Celular
6.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243132

RESUMO

Flavivirus is a positive-sense, single-stranded RNA viral genus, with members causing severe diseases in humans such as tick-borne encephalitis, yellow fever, and dengue fever. Flaviviruses are known to cause remodeling of intracellular membranes into small cavities, where replication of the viral RNA takes place. Nonstructural (NS) proteins are not part of the virus coat and are thought to participate in the formation of these viral replication compartments (RCs). Here, we used tick-borne encephalitis virus (TBEV) as a model for the flaviviruses and developed a stable human cell line in which the expression of NS proteins can be induced without viral RNA replication. The model system described provides a novel and benign tool for studies of the viral components under controlled expression levels. We show that the expression of six NS proteins is sufficient to induce infection-like dilation of the endoplasmic reticulum (ER) and the formation of RC-like membrane invaginations. The NS proteins form a membrane-associated complex in the ER, and electron tomography reveals that the dilated areas of the ER are closely associated with lipid droplets and mitochondria. We propose that the NS proteins drive the remodeling of ER membranes and that viral RNA, RNA replication, viral polymerase, and TBEV structural proteins are not required.IMPORTANCE TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Proteínas não Estruturais Virais/metabolismo , Estruturas Virais/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/metabolismo , Encefalite Transmitida por Carrapatos/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Flavivirus/genética , Flavivirus/metabolismo , Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Células HeLa , Humanos , Modelos Biológicos , RNA Viral/genética , Proteínas não Estruturais Virais/fisiologia , Estruturas Virais/fisiologia , Replicação Viral/fisiologia
7.
Biochem Soc Trans ; 48(1): 155-163, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049332

RESUMO

Caveolae are small Ω-shaped invaginations of the plasma membrane that play important roles in mechanosensing, lipid homeostasis and signaling. Their typical morphology is characterized by a membrane funnel connecting a spherical bulb to the membrane. Membrane funnels (commonly known as necks and pores) are frequently observed as transient states during fusion and fission of membrane vesicles in cells. However, caveolae display atypical dynamics where the membrane funnel can be stabilized over an extended period of time, resulting in cell surface constrained caveolae. In addition, caveolae are also known to undergo flattening as well as short-range cycles of fission and fusion with the membrane, requiring that the membrane funnel closes or opens up, respectively. This mini-review considers the transition between these different states and highlights the role of the protein and lipid components that have been identified to control the balance between surface association and release of caveolae.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Caveolina 1/metabolismo , Filaminas/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Proteínas de Transporte/genética , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais
8.
Nucleic Acids Res ; 46(11): e66, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29554314

RESUMO

Information about the intracellular concentration of dNTPs and NTPs is important for studies of the mechanisms of DNA replication and repair, but the low concentration of dNTPs and their chemical similarity to NTPs present a challenge for their measurement. Here, we describe a new rapid and sensitive method utilizing hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the simultaneous determination of dNTPs and NTPs in biological samples. The developed method showed linearity (R2 > 0.99) in wide concentration ranges and could accurately quantify dNTPs and NTPs at low pmol levels. The intra-day and inter-day precision were below 13%, and the relative recovery was between 92% and 108%. In comparison with other chromatographic methods, the current method has shorter analysis times and simpler sample pre-treatment steps, and it utilizes an ion-pair-free mobile phase that enhances mass-spectrometric detection. Using this method, we determined dNTP and NTP concentrations in actively dividing and quiescent mouse fibroblasts.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Desoxirribonucleotídeos/análise , Ribonucleotídeos/análise , Espectrometria de Massas em Tandem/métodos , Células 3T3 , Animais , Linhagem Celular , Interações Hidrofóbicas e Hidrofílicas , Camundongos
9.
Proc Natl Acad Sci U S A ; 114(22): E4360-E4369, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28223496

RESUMO

The EH-domain-containing protein 2 (EHD2) is a dynamin-related ATPase that confines caveolae to the cell surface by restricting the scission and subsequent endocytosis of these membrane pits. For this, EHD2 is thought to first bind to the membrane, then to oligomerize, and finally to detach, in a stringently regulated mechanistic cycle. It is still unclear how ATP is used in this process and whether membrane binding is coupled to conformational changes in the protein. Here, we show that the regulatory N-terminal residues and the EH domain keep the EHD2 dimer in an autoinhibited conformation in solution. By significantly advancing the use of infrared reflection-absorption spectroscopy, we demonstrate that EHD2 adopts an open conformation by tilting the helical domains upon membrane binding. We show that ATP binding enables partial insertion of EHD2 into the membrane, where G-domain-mediated oligomerization occurs. ATP hydrolysis is related to detachment of EHD2 from the membrane. Finally, we demonstrate that the regulation of EHD2 oligomerization in a membrane-bound state is crucial to restrict caveolae dynamics in cells.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Cavéolas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Camundongos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Infravermelho
10.
Proc Natl Acad Sci U S A ; 114(22): 5629-5634, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28228524

RESUMO

Eps15 (epidermal growth factor receptor pathway substrate 15)-homology domain containing proteins (EHDs) comprise a family of dynamin-related mechano-chemical ATPases involved in cellular membrane trafficking. Previous studies have revealed the structure of the EHD2 dimer, but the molecular mechanisms of membrane recruitment and assembly have remained obscure. Here, we determined the crystal structure of an amino-terminally truncated EHD4 dimer. Compared with the EHD2 structure, the helical domains are 50° rotated relative to the GTPase domain. Using electron paramagnetic spin resonance (EPR), we show that this rotation aligns the two membrane-binding regions in the helical domain toward the lipid bilayer, allowing membrane interaction. A loop rearrangement in GTPase domain creates a new interface for oligomer formation. Our results suggest that the EHD4 structure represents the active EHD conformation, whereas the EHD2 structure is autoinhibited, and reveal a complex series of domain rearrangements accompanying activation. A comparison with other peripheral membrane proteins elucidates common and specific features of this activation mechanism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Ligação Proteica , Domínios Proteicos/fisiologia , Multimerização Proteica , Transporte Proteico/fisiologia
11.
J Cell Sci ; 130(6): 1147-1157, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137756

RESUMO

Adaptation of cell shape and polarization through the formation and retraction of cellular protrusions requires balancing of endocytosis and exocytosis combined with fine-tuning of the local activity of small GTPases like Rab8. Here, we show that endocytic turnover of the plasma membrane at protrusions is directly coupled to surface removal and inactivation of Rab8. Removal is induced by reduced membrane tension and mediated by the GTPase regulator associated with focal adhesion kinase-1 (GRAF1, also known as ARHGAP26), a regulator of clathrin-independent endocytosis. GRAF1-depleted cells were deficient in multi-directional spreading and displayed elevated levels of GTP-loaded Rab8, which was accumulated at the tips of static protrusions. Furthermore, GRAF1 depletion impaired lumen formation and spindle orientation in a 3D cell culture system, indicating that GRAF1 activity regulates polarity establishment. Our data suggest that GRAF1-mediated removal of Rab8 from the cell surface restricts its activity during protrusion formation, thereby facilitating dynamic adjustment of the polarity axis.


Assuntos
Polaridade Celular , Endocitose , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Extensões da Superfície Celular/metabolismo , Cães , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Metaloproteinase 14 da Matriz/metabolismo , Ligação Proteica , Transporte Proteico , Fuso Acromático/metabolismo
12.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046456

RESUMO

Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. We describe here a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly and involves release of malfunctioning membrane-associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad-spectrum antiviral interferon-stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) as the cellular protein targeted by viperin. Viperin-induced antiviral activity, as well as C-particle release, was stimulated by GBF1 inhibition and knockdown and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive noninfectious virus particles via a GBF1-dependent mechanism. This as-yet-undescribed antiviral mechanism allows potential therapeutic intervention.IMPORTANCE The interferon response can target viral infection on almost every level; however, very little is known about the interference of flavivirus assembly. We show here that interferon, through the action of viperin, can disturb the assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appears to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study, we show that viperin induces capsid particle release by interacting and inhibiting the function of the cellular protein Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and is essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target.


Assuntos
Infecções por Flavivirus/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interferon Tipo I/farmacologia , Proteínas/metabolismo , Células A549 , Animais , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Flavivirus/efeitos dos fármacos , Flavivirus/patogenicidade , Infecções por Flavivirus/tratamento farmacológico , Infecções por Flavivirus/virologia , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células HeLa , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Células Vero , Virulência , Montagem de Vírus/efeitos dos fármacos
13.
Angew Chem Int Ed Engl ; 58(5): 1417-1421, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30506956

RESUMO

Colibactin is a small molecule produced by certain bacterial species of the human microbiota that harbour the pks genomic island. Pks+ bacteria induce a genotoxic phenotype in eukaryotic cells and have been linked with colorectal cancer progression. Colibactin is produced in a benign, prodrug form which, prior to export, is enzymatically matured by the producing bacteria to its active form. Although the complete structure of colibactin has not been determined, key structural features have been described including an electrophilic cyclopropane motif, which is believed to alkylate DNA. To investigate the influence of the putative "warhead" and the prodrug strategy on genotoxicity, a series of photolabile colibactin probes were prepared that upon irradiation induced a pks+ like phenotype in HeLa cells. Furthermore, results from DNA cross-linking and imaging studies of clickable analogues enforce the hypothesis that colibactin effects its genotoxicity by directly targeting DNA.


Assuntos
Sondas Moleculares/farmacologia , Peptídeos/farmacologia , Policetídeos/farmacologia , Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Células HeLa , Humanos , Sondas Moleculares/química , Estrutura Molecular , Peptídeos/química , Processos Fotoquímicos , Policetídeos/química
14.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974569

RESUMO

Epidemic keratoconjunctivitis (EKC) is a severe, contagious ocular disease that affects 20 to 40 million individuals worldwide every year. EKC is mainly caused by six types of human adenovirus (HAdV): HAdV-8, -19, -37, -53, -54, and -56. Of these, HAdV-8, -19, and -37 use sialic acid-containing glycans as cellular receptors. αVß3, αVß5, and a few additional integrins facilitate entry and endosomal release of other HAdVs. With the exception of a few biochemical analyses indicating that HAdV-37 can interact physically with αVß5, little is known about the integrins used by EKC-causing HAdVs. Here, we investigated the overall integrin expression on human corneal cells and found expression of α2, α3, α6, αV, ß1, and ß4 subunits in human corneal in situ epithelium and/or in a human corneal epithelial (HCE) cell line but no or less accessible expression of α4, α5, ß3, or ß5. We also identified the integrins used by HAdV-37 through a series of binding and infection competition experiments and different biochemical approaches. Together, our data suggest that HAdV-37 uses αVß1 and α3ß1 integrins for infection of human corneal epithelial cells. Furthermore, to confirm the relevance of these integrins in the HAdV-37 life cycle, we developed a corneal multilayer tissue system and found that HAdV-37 infection correlated well with the patterns of αV, α3, and ß1 integrin expression. These results provide further insight into the tropism and pathogenesis of EKC-causing HAdVs and may be of importance for future development of new antiviral drugs.IMPORTANCE Keratitis is a hallmark of EKC, which is caused by six HAdV types (HAdV-8, -19, -37, -53, -54, and -56). HAdV-37 and some other HAdV types interact with integrin αVß5 in order to enter nonocular human cells. In this study, we found that αVß5 is not expressed on human corneal epithelial cells, thus proposing other host factors mediate corneal infection. Here, we first characterized integrin expression patterns on corneal tissue and corneal cells. Among the integrins identified, competition binding and infection experiments and biochemical assays pointed out αVß1 and α3ß1 to be of importance for HAdV-37 infection of corneal tissue. In the absence of a good animal model for EKC-causing HAdVs, we also developed an in vitro system with multilayer HCE cells and confirmed the relevance of the suggested integrins during HAdV-37 infection.


Assuntos
Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/fisiologia , Integrina alfa3beta1/fisiologia , Receptores de Vitronectina/fisiologia , Células A549 , Córnea/patologia , Córnea/virologia , Humanos , Receptores Virais , Ligação Viral , Internalização do Vírus
15.
J Cell Sci ; 128(5): 979-91, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25588833

RESUMO

Caveolae are invaginations of the cell surface thought to regulate membrane tension, signalling, adhesion and lipid homeostasis owing to their dynamic behaviour ranging from stable surface association to dynamic rounds of fission and fusion with the plasma membrane. The caveolae coat is generated by oligomerisation of the membrane protein caveolin and the family of cavin proteins. Here, we show that cavin3 (also known as PRKCDBP) is targeted to caveolae by cavin1 (also known as PTRF) where it interacts with the scaffolding domain of caveolin1 and promote caveolae dynamics. We found that the N-terminal region of cavin3 binds a trimer of the cavin1 N-terminus in competition with a homologous cavin2 (also known as SDPR) region, showing that the cavins form distinct subcomplexes through their N-terminal regions. Our data shows that cavin3 is enriched at deeply invaginated caveolae and that loss of cavin3 in cells results in an increase of stable caveolae and a decrease of caveolae that are only present at the membrane for a short time. We propose that cavin3 is recruited to the caveolae coat by cavin1 to interact with caveolin1 and regulate the duration time of caveolae at the plasma membrane.


Assuntos
Cavéolas/metabolismo , Caveolina 1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Caveolina 1/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética
16.
J Cell Sci ; 128(22): 4183-95, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26446261

RESUMO

Changes in cell morphology require coordination of plasma membrane turnover and cytoskeleton dynamics, processes that are regulated by Rho GTPases. Here, we describe how a direct interaction between the Rho GTPase Cdc42 and the GTPase-activating protein (GAP) GRAF1 (also known as ARHGAP26), facilitates rapid cell surface turnover at the leading edge. Both Cdc42 and GRAF1 were required for fluid-phase uptake and regulated the generation of transient GRAF1-coated endocytic carriers, which were distinct from clathrin-coated vesicles. GRAF1 was found to transiently assemble at discrete Cdc42-enriched punctae at the plasma membrane, resulting in a corresponding decrease in the microdomain association of Cdc42. However, Cdc42 captured in its active state was, through a GAP-domain-mediated interaction, localised together with GRAF1 on accumulated internal structures derived from the cell surface. Correlative fluorescence and electron tomography microscopy revealed that these structures were clusters of small membrane carriers with defective endosomal processing. We conclude that a transient interaction between Cdc42 and GRAF1 drives endocytic turnover and controls the transition essential for endosomal maturation of plasma membrane internalised by this mechanism.


Assuntos
Actinas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Proteína cdc42 de Ligação ao GTP/genética
17.
Curr Opin Cell Biol ; 88: 102371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788266

RESUMO

Caveolae are atypical plasma membrane invaginations that take part in lipid sorting and regulation of oxidative and mechanical plasma membrane stress. Caveola formation requires caveolin, cavin, and specific lipid types. The recent advances in understanding the structure and assembly of caveolin and cavin complexes within the membrane context have clarified the fundamental processes underlying caveola biogenesis. In addition, the curvature of the caveola membrane is controlled by the regulatory proteins EHD2, pacsin2, and dynamin2, which also function to restrain the scission of caveolae from the plasma membrane (PM). Here, this is integrated with novel insights on caveolae as lipid and mechanosensing complexes that can dynamically flatten or disassemble to counteract mechanical, and oxidative stress.


Assuntos
Cavéolas , Membrana Celular , Humanos , Cavéolas/metabolismo , Membrana Celular/metabolismo , Animais , Caveolinas/metabolismo
18.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36729022

RESUMO

Caveolae are small membrane invaginations that generally are stably attached to the plasma membrane. Their release is believed to depend on the GTPase dynamin 2 (Dyn2), in analogy with its role in fission of clathrin-coated vesicles. The mechanistic understanding of caveola fission is, however, sparse. Here, we used microscopy-based tracking of individual caveolae in living cells to determine the role of Dyn2 in caveola dynamics. We report that Dyn2 stably associated with the bulb of a subset of caveolae, but was not required for formation or fission of caveolae. Dyn2-positive caveolae displayed longer plasma membrane duration times, whereas depletion of Dyn2 resulted in shorter duration times and increased caveola fission. The stabilizing role of Dyn2 was independent of its GTPase activity and the caveola stabilizing protein EHD2. Thus, we propose that, in contrast to the current view, Dyn2 is not a core component of the caveolae machinery, but rather functions as an accessory protein that restrains caveola internalization.


Assuntos
Cavéolas , Dinamina II , Cavéolas/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , Endocitose , GTP Fosfo-Hidrolases/metabolismo
19.
Semin Cell Dev Biol ; 21(4): 363-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19931628

RESUMO

Cellular activity depends to a large extent on membrane bilayer dynamics. Many processes, such as organelle biogenesis and vesicular transport, rely on alterations in membrane structure and shape. It is now widely accepted that intracellular membrane curvature generation and remodelling is mediated and regulated by protein action, and the mechanisms behind the processes are currently being revealed. Here, we will briefly discuss the key principles of membrane deformation and focus on different endocytic events that use various kinds of proteins to shape the plasma membrane into transport carriers. The entry routes are adopted to make sure that a vast variety of molecules on the cell surface can be regulated by endocytosis. The principles for membrane sculpting of endocytic carriers can be viewed either from a perspective of rigid coat budding or of flexible opportunistic budding. We will discuss these principles and their implications, focusing on clathrin-dependent and -independent carrier formation and the proteins involved in the respective pathways.


Assuntos
Membrana Celular , Clatrina/metabolismo , Endocitose/fisiologia , Membranas Intracelulares , Transporte Biológico/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Clatrina/química , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
20.
Front Cell Dev Biol ; 10: 942374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158197

RESUMO

To accommodate surplus energy, the adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). The presence of hypertrophic adipocytes is a key characteristic of adipose tissue dysfunction. High-fat diet (HFD) fed C57BL/6J mice are a commonly used model to study obesity and obesity-related complications. In the present study, we have characterized adipose plasticity, at both the cellular and tissue level, by examining the temporal development of systemic insulin resistance and adiposity in response to HFD-feeding for 4, 8, and 12 weeks (4w, 8w, and 12w). Within the same time frame, we examined systemic metabolic flexibility and adipose plasticity when switching from HFD- to chow-diet during the last 2 weeks of diet intervention (referred to as the reverse (REV) group: 4wREV (2w HFD+2w chow), 8wREV (6w HFD+2w chow), 12wREV (10w HFD+2w chow)). In response to HFD-feeding over time, the 12w group had impaired systemic insulin sensitivity compared to both the 4w and 8w groups, accompanied by an increase in hypertrophic inguinal adipocytes and liver triglycerides. After reversing from HFD- to chow-feeding, most parameters were completely restored to chow control levels for 4wREV and 8wREV groups. In contrast, the 12wREV group had a significantly increased number of hypertrophic adipocytes, liver triglycerides accumulation, and impaired systemic insulin sensitivity compared to chow-fed mice. Further, image analysis at the single-cell level revealed a cell-size dependent organization of actin filaments for all feeding conditions. Indeed, the impaired adipocyte size plasticity in the 12wREV group was accompanied by increased actin filamentation and reduced insulin-stimulated glucose uptake compared with chow-fed mice. In summary, these results demonstrate that the C57BL/6J HFD-feeding model has a large capacity to restore adipocyte cell size and systemic insulin sensitivity, and that a metabolic tipping point occurs between 8 and 12w of HFD-feeding where this plasticity deteriorates. We believe these findings provide substantial understanding of C57BL/6J mice as an obesity model, and that an increased pool of hypertrophic ING adipocytes could contribute to aggravated insulin resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA