Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(3): e18059, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38140828

RESUMO

Metastasis is an important contributor to increased mortality rates in non-small cell lung cancer (NSCLC). The TGF-ß signalling pathway plays a crucial role in facilitating tumour metastasis through epithelial-mesenchymal transition (EMT). Glycolysis, a key metabolic process, is strongly correlated with NSCLC metastasis. Pirfenidone (PFD) has been shown to safely and effectively inhibit TGF-ß1 in patients with lung diseases. Furthermore, TGF-ß1 and glycolysis demonstrate an interdependent relationship within the tumour microenvironment. Our previous study demonstrated that PFD effectively inhibited glycolysis in NSCLC cells, prompting further investigation into its potential antitumour effects in this context. Therefore, the present study aims to investigate the potential antitumour effect of PFD in NSCLC and explore the relationship among TGF-ß1, glycolysis and EMT through further experimentation. The antitumour effects of PFD were evaluated using five different NSCLC cell lines and a xenograft tumour model. Notably, PFD demonstrated a significant antitumour effect specifically in highly glycolytic H1299 cells. To elucidate the underlying mechanism, we compared the efficacy of PFD after pretreatment with either TGF-ß1 or a TGF-ß receptor inhibitor (LY2109761). The energy metabolomics analysis of tumour tissue demonstrated that PFD, a chemosensitizing agent, reduced lactate and ATP production, thereby inhibiting glycolysis and exerting synergistic antineoplastic effects. Additionally, PFD combined with cisplatin targeted TGF-ß1 to inhibit glycolysis during EMT and enhanced the chemosensitization of A549 and H1299 cells. The magnitude of the anticancer effect exhibited by PFD was intricately linked to its metabolic properties.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Piridonas , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Reprogramação Metabólica , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA