Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Mol Cell ; 83(4): 539-555.e7, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36702126

RESUMO

Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.


Assuntos
Replicação do DNA , Proteína de Replicação A , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Replicação do DNA/genética , Sumoilação , Dano ao DNA , Cromatina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854302

RESUMO

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Assuntos
Cromatina , Reparo do DNA , Animais , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Mamíferos/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Mol Cell ; 79(5): 824-835.e5, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32649882

RESUMO

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions that threaten genomic integrity. Recent findings highlight that SPRTN, a specialized DNA-dependent metalloprotease, is a central player in proteolytic cleavage of DPCs. Previous studies suggest that SPRTN deubiquitination is important for its chromatin association and activation. However, the regulation and consequences of SPRTN deubiquitination remain unclear. Here we report that, in response to DPC induction, the deubiquitinase VCPIP1/VCIP135 is phosphorylated and activated by ATM/ATR. VCPIP1, in turn, deubiquitinates SPRTN and promotes its chromatin relocalization. Deubiquitination of SPRTN is required for its subsequent acetylation, which promotes SPRTN relocation to the site of chromatin damage. Furthermore, Vcpip1 knockout mice are prone to genomic instability and premature aging. We propose a model where two sequential post-translational modifications (PTMs) regulate SPRTN chromatin accessibility to repair DPCs and maintain genomic stability and a healthy lifespan.


Assuntos
Envelhecimento/genética , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Acetilação , Envelhecimento/metabolismo , Animais , Linhagem Celular , Dano ao DNA , Proteínas de Ligação a DNA/genética , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Feminino , Instabilidade Genômica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Ubiquitinação
4.
Cell ; 140(3): 384-96, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20096447

RESUMO

Stability and localization of p53 is essential for its tumor suppressor function. Ubiquitination by the E3 ubiquitin ligase Mdm2 is the major regulatory mechanism of p53, which induces p53 nuclear export and degradation. However, it is unclear whether ubiquitinated cytoplasmic p53 can be recycled. Here, we report that USP10, a cytoplasmic ubiquitin-specific protease, deubiquitinates p53, reversing Mdm2-induced p53 nuclear export and degradation. After DNA damage, USP10 is stabilized, and a fraction of USP10 translocates to the nucleus to activate p53. The translocation and stabilization of USP10 is regulated by ATM -mediated phosphorylation of USP10 at Thr42 and Ser337. Finally, USP10 suppresses tumor cell growth in cells with wild-type p53, with USP10 expression downregulated in a high percentage of clear cell carcinomas, known to have few p53 mutations. These findings reveal USP10 to be a novel regulator of p53, providing an alternative mechanism of p53 inhibition in cancers with wild-type p53.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina Tiolesterase/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Mutadas de Ataxia Telangiectasia , Carcinoma de Células Renais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Humanos , Neoplasias Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteína Supressora de Tumor p53/análise , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação
5.
Drug Resist Updat ; 74: 101085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636338

RESUMO

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


Assuntos
Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Recombinação Homóloga , Quinase Syk , Quinase Syk/metabolismo , Quinase Syk/genética , Quinase Syk/antagonistas & inibidores , Humanos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosforilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Reparo do DNA/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos
6.
Genes Dev ; 30(23): 2581-2595, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27941124

RESUMO

Homologous recombination (HR) is one of the major DNA double-strand break (DSB) repair pathways in mammalian cells. Defects in HR trigger genomic instability and result in cancer predisposition. The defining step of HR is homologous strand exchange directed by the protein RAD51, which is recruited to DSBs by BRCA2. However, the regulation of the BRCA2-RAD51 axis remains unclear. Here we report that ubiquitination of RAD51 hinders RAD51-BRCA2 interaction, while deubiquitination of RAD51 facilitates RAD51-BRCA2 binding and RAD51 recruitment and thus is critical for proper HR. Mechanistically, in response to DNA damage, the deubiquitinase UCHL3 is phosphorylated and activated by ATM. UCHL3, in turn, deubiquitinates RAD51 and promotes the binding between RAD51 and BRCA2. Overexpression of UCHL3 renders breast cancer cells resistant to radiation and chemotherapy, while depletion of UCHL3 sensitizes cells to these treatments, suggesting a determinant role of UCHL3 in cancer therapy. Overall, we identify UCHL3 as a novel regulator of DNA repair and reveal a model in which a phosphorylation-deubiquitination cascade dynamically regulates the BRCA2-RAD51 pathway.


Assuntos
Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Recombinação Homóloga/genética , Rad51 Recombinase/metabolismo , Ubiquitinação/genética , Proteína BRCA2/genética , Neoplasias da Mama/enzimologia , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células HEK293 , Recombinação Homóloga/efeitos dos fármacos , Humanos , Células MCF-7 , Fosforilação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica/genética , Rad51 Recombinase/genética , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/genética , Transdução de Sinais/genética , Análise de Sobrevida , Ubiquitina Tiolesterase , Ubiquitinação/efeitos dos fármacos
7.
Nucleic Acids Res ; 49(19): 11224-11240, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34606619

RESUMO

The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37-BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , RecQ Helicases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Endopeptidases/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Camundongos , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RecQ Helicases/metabolismo , Análise de Sobrevida , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nucleic Acids Res ; 49(6): 3322-3337, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704464

RESUMO

RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Proteínas Ativadoras de GTPase/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteína de Replicação A/metabolismo , Animais , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosforilação , Proteólise , Transdução de Sinais , Estresse Fisiológico/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Mol Cell ; 56(5): 681-95, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25454945

RESUMO

DNA replication is executed only when cells have sufficient metabolic resources and undamaged DNA. Nutrient limitation and DNA damage cause a metabolic checkpoint and DNA damage checkpoint, respectively. Although SIRT1 activity is regulated by metabolic stress and DNA damage, its function in these stress-mediated checkpoints remains elusive. Here we report that the SIRT1-TopBP1 axis functions as a switch for both checkpoints. With glucose deprivation, SIRT1 is activated and deacetylates TopBP1, resulting in TopBP1-Treslin disassociation and DNA replication inhibition. Conversely, SIRT1 activity is inhibited under genotoxic stress, resulting in increased TopBP1 acetylation that is important for the TopBP1-Rad9 interaction and activation of the ATR-Chk1 pathway. Mechanistically, we showed that acetylation of TopBP1 changes the conformation of TopBP1, thereby facilitating its interaction with distinct partners in DNA replication and checkpoint activation. Taken together, our studies identify the SIRT1-TopBP1 axis as a key signaling mode in the regulation of the metabolic checkpoint and the DNA damage checkpoint.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Sirtuína 1/metabolismo , Estresse Fisiológico , Acetilação , Animais , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Reparo do DNA , Replicação do DNA , Células HEK293 , Humanos , Camundongos , Conformação Proteica , Transdução de Sinais
10.
Nucleic Acids Res ; 48(22): 12711-12726, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33237263

RESUMO

PrimPol has been recently identified as a DNA damage tolerant polymerase that plays an important role in replication stress response. However, the regulatory mechanisms of PrimPol are not well defined. In this study, we identify that the deubiquitinase USP36 interferes with degradation of PrimPol to regulate the replication stress response. Mechanistically, USP36 is deubiquitinated following DNA replication stress, which in turn facilitates its upregulation and interaction with PrimPol. USP36 deubiquitinates K29-linked polyubiquitination of PrimPol and increases its protein stability. Depletion of USP36 results in replication stress-related defects and elevates cell sensitivity to DNA-damage agents, such as cisplatin and olaparib. Moreover, USP36 expression positively correlates with the level of PrimPol protein and poor prognosis in patient samples. These findings indicate that the regulation of PrimPol K29-linked ubiquitination by USP36 plays a critical role in DNA replication stress and chemotherapy response.


Assuntos
DNA Primase/genética , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Enzimas Multifuncionais/genética , Neoplasias Ovarianas/genética , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Enzimas Desubiquitinantes/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poliubiquitina/genética , Prognóstico , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos
11.
EMBO J ; 36(10): 1434-1446, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28363942

RESUMO

The AKT pathway is a fundamental signaling pathway that mediates multiple cellular processes, such as cell proliferation and survival, angiogenesis, and glucose metabolism. We recently reported that the immunophilin FKBP51 is a scaffolding protein that can enhance PHLPP-AKT interaction and facilitate PHLPP-mediated dephosphorylation of AKT at Ser473, negatively regulating AKT activation. However, the regulation of FKBP51-PHLPP-AKT pathway remains unclear. Here we report that a deubiquitinase, USP49, is a new regulator of the AKT pathway. Mechanistically, USP49 deubiquitinates and stabilizes FKBP51, which in turn enhances PHLPP's capability to dephosphorylate AKT Furthermore, USP49 inhibited pancreatic cancer cell proliferation and enhanced cellular response to gemcitabine in a FKBP51-AKT-dependent manner. Clinically, decreased expression of USP49 in patients with pancreatic cancer was associated with decreased FKBP51 expression and increased AKT phosphorylation. Overall, our findings establish USP49 as a novel regulator of AKT pathway with a critical role in tumorigenesis and chemo-response in pancreatic cancer.


Assuntos
Carcinogênese , Resistência a Medicamentos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/metabolismo , Ubiquitina Tiolesterase/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Análise Serial de Tecidos , Gencitabina
12.
Genes Dev ; 26(8): 791-6, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22465953

RESUMO

SIRT1 regulates a variety of cellular functions, including cellular stress responses and energy metabolism. SIRT1 activity is negatively regulated by DBC1 (Deleted in Breast Cancer 1) through direct binding. However, how the DBC1-SIRT1 interaction is regulated remains unclear. We found that the DBC1-SIRT1 interaction increases following DNA damage and oxidative stress. The stress-induced DBC1-SIRT1 interaction requires the ATM-dependent phosphorylation of DBC1 at Thr 454, which creates a second binding site for SIRT1. Finally, we showed that the stress-induced DBC1-SIRT1 interaction is important for cell fate determination following genotoxic stress. These results revealed a novel mechanism of SIRT1 regulation during genotoxic stress.


Assuntos
Sirtuína 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 1/genética
13.
Nature ; 470(7332): 124-8, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293379

RESUMO

p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser 102 of MMSET. Thus, we propose that a pathway involving γH2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.


Assuntos
Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Histona-Lisina N-Metiltransferase/química , Humanos , Metilação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Repressoras/química , Transativadores/química , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
14.
Nucleic Acids Res ; 43(11): 5465-75, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25948581

RESUMO

There are the two major pathways responsible for the repair of DNA double-strand breaks (DSBs): non-homologous end-joining (NHEJ) and homologous recombination (HR). NHEJ operates throughout the cell-cycle, while HR is primarily active in the S/G2 phases suggesting that there are cell cycle-specific mechanisms that regulate the balance between NHEJ and HR. Here we reported that CDK2 could phosphorylate RNF4 on T26 and T112 and enhance RNF4 E3 ligase activity, which is important for MDC1 degradation and proper HR repair during S phase. Mutation of the RNF4 phosphorylation sites results in MDC1 stabilization, which in turn compromised HR during S-phase. These results suggest that in addition to drive cell cycle progression, CDK also targets RNF4, which is involved in the regulatory network of DSBs repair.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Proteínas Nucleares/metabolismo , Reparo de DNA por Recombinação , Fase S/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/química , Fosforilação , Sumoilação , Transativadores/metabolismo , Fatores de Transcrição/química
15.
EMBO J ; 31(13): 3008-19, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22635276

RESUMO

In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Sumoilação , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Regulação para Baixo , Endodesoxirribonucleases , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Mutação , Proteínas Nucleares/genética , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Proteína de Replicação A/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/metabolismo
16.
Nucleic Acids Res ; 42(21): 13110-21, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355518

RESUMO

The DNA damage response triggers cell-cycle checkpoints, DNA repair and apoptosis using multiple post-translational modifications as molecular switches. However, how ubiquitination regulates ATR signaling in response to replication stress and single-strand break is still unclear. Here, we identified the deubiquitination enzyme (DUB) USP20 as a pivotal regulator of ATR-related DDR pathway. Through screening a panel of DUBs, we identified USP20 as critical for replication stress response. USP20 is phosphorylated by ATR, resulting in disassociation of the E3 ubiquitin ligase HERC2 from USP20 and USP20 stabilization. USP20 in turn deubiquitinates and stabilizes Claspin and enhances the activation of ATR-Chk1 signaling. These findings reveal USP20 to be a novel regulator of ATR-dependent DNA damage signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dano ao DNA , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Células Cultivadas , Reparo do DNA , Replicação do DNA , Endopeptidases/genética , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Fosforilação , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/fisiologia , Ubiquitina-Proteína Ligases
17.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333340

RESUMO

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase known to regulate immune cell function, cell adhesion, and vascular development. Here, we report that Syk can be expressed in high grade serous ovarian cancer and triple negative breast cancers and promotes DNA double strand break resection, homologous recombination (HR) and therapeutic resistance. We found that Syk is activated by ATM following DNA damage and is recruited to DNA double strand breaks by NBS1. Once at the break site, Syk phosphorylates CtIP, a key mediator of resection and HR, at Thr-847 to promote repair activity, specifically in Syk expressing cancer cells. Syk inhibition or genetic deletion abolished CtIP Thr-847 phosphorylation and overcame the resistant phenotype. Collectively, our findings suggest that Syk drives therapeutic resistance by promoting DNA resection and HR through a novel ATM-Syk-CtIP pathway, and that Syk is a new tumor-specific target to sensitize Syk-expressing tumors to PARPi and other DNA targeted therapy.

18.
J Biol Chem ; 286(32): 28192-9, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21705321

RESUMO

Mediator of DNA damage checkpoint 1 (MDC1) plays an important role in the DNA damage response (DDR). MDC1 functions as a mediator protein and binds multiple proteins involved in different aspects of the DDR. However, little is know about the organization of MDC1 complexes. Here we show that ataxia telangiectasia, mutated (ATM) phosphorylates MDC1 at Thr-98 following DNA damage, which promotes its oligomerization. Oligomerization of MDC1 is important for the accumulation of MDC1 complex at the sites of DNA damage. Mutation of Thr-98 (T98A) would abolish its oligomerization and result in a defect in DNA damage checkpoint activation and increased sensitivity to irradiation. Taken together, these results suggest that the oligomerization of MDC1 plays an important role in DDR and help understand the formation of proteins complexes at the sites of DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Multimerização Proteica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mutação , Fosforilação/fisiologia , Fosforilação/efeitos da radiação , Multimerização Proteica/efeitos da radiação , Proteínas Serina-Treonina Quinases/genética , Tolerância a Radiação/genética , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Proteínas Supressoras de Tumor/genética
19.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36138131

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Assuntos
Carcinoma Ductal Pancreático , Proteína Homóloga a MRE11 , Metiltransferases , Neoplasias Pancreáticas , Adenosina Difosfato Ribose , Carcinoma Ductal Pancreático/tratamento farmacológico , DNA , Exonucleases/genética , Humanos , Proteína Homóloga a MRE11/genética , Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , RNA , Mutações Sintéticas Letais , Neoplasias Pancreáticas
20.
Proc Natl Acad Sci U S A ; 105(32): 11200-5, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18678890

RESUMO

The product of the Nijmegen breakage syndrome gene (NBS1) plays crucial roles in DNA damage response through its association with many proteins, including MRE11 and RAD50. However, it remains to be determined exactly how NBS1 accumulates at or near DNA double-strand breaks. Here we report that MDC1 directly binds to NBS1 and targets NBS1 to the sites of DNA damage. The MDC1-NBS1 interaction occurs through a specific region (residues 200-420) of MDC1, which contains multiple consensus casein kinase 2 (CK2) phosphorylation sites. In addition, this interaction requires both the forkhead-associated (FHA) and tandem BRCA1 C-terminal (BRCT) domains of NBS1. Disruption of the MDC1-NBS1 interaction results in failure of NBS1 accumulation at DNA double-strand breaks and impairment of intra-S checkpoint activation. These studies provide important mechanistic insights as to how MDC1 regulates NBS1 and the intra-S-phase checkpoint in response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas Nucleares/metabolismo , Fase S , Transativadores/metabolismo , Hidrolases Anidrido Ácido , Proteínas Adaptadoras de Transdução de Sinal , Animais , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Fosforilação , Estrutura Terciária de Proteína/genética , Fase S/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA