Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 351: 124028, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677456

RESUMO

Microalgae is an effective bioremediation technique employed for treating piggery effluent. However, there is insufficient study on how the presence of microplastics (MPs) in wastewater affects the ability of microalgae to remove heavy metals from piggery effluent. This study aims to investigate the influence of two prevalent heavy metals found in piggery wastewater, Cu2+ (2 mg/L) and Zn2+ (2 mg/L), on their removal by microalgae (Desmodesmus sp. CHX1) in the presence of four types of MPs: polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene terephthalate (PET). The results revealed that smaller particle size MPs promoted chlorophyll accumulation, while larger particles inhibits it. Additionally, higher concentrations of MPs promoted chlorophyll accumulation, while lower concentrations inhibited it. As for heavy metals, the presence of microplastics reduced the removal efficiency of Cu2+ and Zn2+ by Desmodesmus sp. CHX1. The highest inhibition of Cu2+ was 30%, 10%, 19%, and 16% of the control (CK), and the inhibition of Zn2+ was 7%, 4%, 4%, and 13%, respectively, under the treatments of PE, PVC, PP and PET MPs. Furthermore, Desmodesmus sp. CHX1 can secrete more extracellular polymeric substances (EPS) and form heterogeneous aggregates with MPs to counteract their pressure. These findings elucidate the impact of MPs on microalgae in bioremediation settings and offer useful insights into the complex relationships between microalgae, MPs, and heavy metals in the environment.


Assuntos
Biodegradação Ambiental , Metais Pesados , Microalgas , Microplásticos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Microalgas/metabolismo , Metais Pesados/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Animais , Eliminação de Resíduos Líquidos/métodos , Suínos
2.
Environ Technol ; : 1-13, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773903

RESUMO

The increasing concentrations of heavy metals in livestock wastewater pose a serious threat to the environmental safety and human health, limiting its resource utilisation. In the present study, microalgae and nanoscale zero-valent iron were selected to construct a coupled system for copper-containing wastewater treatment. The addition of 50 mg·L-1 nanoscale zero-valent iron (50 nm) was the optimal value for the experiment, which could significantly increase the biomass of microalgae. In addition, nanoscale zero-valent iron stimulated microalgal secretion of extracellular polymeric substances, increasing the contents of binding sites, organic ligands, and functional groups on the microalgal surfaces and ultimately promoting the settling of microalgae and binding of heavy metals. The coupled system could quickly adapt to copper-containing wastewater of 10 mg·L-1, and the copper removal rate reached 94.99%. Adsorption and uptake by organisms, together with the contribution of zero-valent iron nanoparticles, are the major copper removal pathways. Overall, this work offers a novel technical solution for enhanced treatment of copper-containing livestock wastewater, which will help improve the efficiency and quality of wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA