Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116241, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522287

RESUMO

Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.


Assuntos
Compostos Férricos , Sobrecarga de Ferro , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Sobrecarga de Ferro/patologia , Ferro/metabolismo
2.
Exp Parasitol ; 250: 108533, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37072106

RESUMO

Haemonchus contortus (H. contortus) has developed resistance to nearly all available anthelmintic medications. Hence, alternative strategies are required to counter anthelmintic resistance. The present study investigated the anthelmintic potential of Bacillus thuringiensis (B. thuringiensis) against H. contortus. Bacterial spp were identified by conventional methods and confirmed by PCR; In addition, PCR amplification of the bacterial 16S rRNA gene detected B. thuringiensis at 750 base pairs (bps). The amplified products were sequenced, and the sequence data were confirmed using the Basic Local Alignment Tool (BLAST), which showed a significant alignment (97.98%) with B. thuringiensis and B. cereus. B. thuringiensis were selected to isolate purified crystal proteins (toxins), The protein profile confirmed by SDS-PAGE showed three prominent bands at 70, 36, and 15 kDa. In addition, the larval development of H. contortus was examined in vitro using two different treatments. Purified crystal protein diluted in 10 mM NaCl at a concentration of 2 mg/ml significantly reduced (P < 0.001) larval development by 75.10% compared to 1 × 108 CFU/ml spore-crystal suspension reduced (43.97%). The findings of in vitro experiments indicated that purified crystal protein was more toxic to the H. contortus larva than the spore-crystal suspension and control group. Moreover, To test the antinematodal effects of B. thuringiensis toxins in vivo, we chose 12 male goats (6 months old) and reared these animals in parasite-free conditions. We performed Fecal egg count reduction tests (FECRT) on samples collected before and after treatment at various times denotes 48 h post-treatment with Purified crystal proteins was significantly decreased (842 ± 19.07) EPG compared to 24 (2560 ± 233.66) and 12 h (4020 ± 165.22). Similarly, after 48 h of treatment, the FECRT of the Spores-crystal mix was reduced (2920 ± 177.20) EPG followed by 24- and 12-h denotes (4500 ± 137.84) and (4760 ± 112.24), respectively. Results of the above experiment suggested that purified crystal proteins have more anthelmintic potential in vivo. Current findings determine that B. thuringiensis toxin against H. contortus could be used in small ruminants to counter anthelmintic resistance. This study also suggested that future research structured on these proteins' pharmacokinetics and mode of action.


Assuntos
Anti-Helmínticos , Bacillus thuringiensis , Hemoncose , Haemonchus , Doenças dos Ovinos , Animais , Masculino , Ovinos/genética , RNA Ribossômico 16S , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/metabolismo , Proteínas de Bactérias/análise , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Doenças dos Ovinos/tratamento farmacológico , Contagem de Ovos de Parasitas/veterinária
3.
Ecotoxicol Environ Saf ; 249: 114364, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508806

RESUMO

Ferric citrate (FC) has been used as an iron fortifier and nutritional supplement, which is reported to induce colitis in rats, however the underlying mechanism remains to be elucidated. We performed a 16-week study of FC in male healthy C57BL/6 mice (nine-month-old) with oral administration of Ctr (0.9 % NaCl), 1.25 % FC (71 mg/kg/bw), 2.5 % FC (143 mg/kg/bw) and 5 % FC (286 mg/kg/bw). FC-exposure resulted in colon iron accumulation, histological alteration and reduce antioxidant enzyme activities, such as glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), together with enhanced lipid peroxidation level, including malondialdehyde (MDA) level and 4-Hydroxynonenal (4-HNE) protein expression. Exposure to FC was associated with upregulated levels of the interleukin (IL)- 6, IL-1ß, IL-18, IL-8 and tumor necrosis factor α (TNF-α), while down-regulated levels of IL-4 and IL-10. Exposure to FC was positively associated with the mRNA and protein expressions of cysteine-aspartic proteases (Caspase)- 9, Caspase-3, Bcl-2-associated X protein (Bax), while negatively associated with B-cell lymphoma 2 (Bcl2) in mitochondrial apoptosis signaling pathway. FC-exposure changed the diversity and composition of gut microbes. Additionally, the serum lipopolysaccharide (LPS) contents increased in FC-exposed groups when compared with the control group, while the expression of colonic tight junction proteins (TJPs), such as Claudin-1 and Occludin were decreased. These findings indicate that the colonic mucosal injury induced by FC-exposure are associated with oxidative stress generation, inflammation response and cell apoptosis, as well as the changes in gut microbes diversity and composition.


Assuntos
Apoptose , Colo , Compostos Férricos , Alimentos Fortificados , Microbioma Gastrointestinal , Inflamação , Estresse Oxidativo , Animais , Masculino , Camundongos , Ratos , Apoptose/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Compostos Férricos/toxicidade , Alimentos Fortificados/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686246

RESUMO

In recent years, olfactory dysfunction has attracted increasingly more attention as a hallmark symptom of neurodegenerative diseases (ND). Deeply understanding the molecular basis underlying the development of the olfactory bulb (OB) will provide important insights for ND studies and treatments. Now, with a genetic knockout mouse model, we show that TRIM67, a new member of the tripartite motif (TRIM) protein family, plays an important role in regulating the proliferation and development of mitral cells in the OB. TRIM67 is abundantly expressed in the mitral cell layer of the OB. The genetic deletion of TRIM67 in mice leads to excessive proliferation of mitral cells in the OB and defects in its synaptic development, resulting in reduced olfactory function in mice. Finally, we show that TRIM67 may achieve its effect on mitral cells by regulating the Semaphorin 7A/Plexin C1 (Sema7A/PlxnC1) signaling pathway.


Assuntos
Bulbo Olfatório , Olfato , Animais , Camundongos , Homeostase , Deleção de Genes , Proteínas com Motivo Tripartido , Proteínas do Citoesqueleto
5.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012632

RESUMO

Colon cancer is a common malignant tumor of the digestive tract, and it is considered among the biggest killers. Scientific and reasonable treatments can effectively improve the survival rate of patients if performed in the early stages. Polyphyllin I (PPI), a pennogenyl saponin isolated from Paris polyphylla var. yunnanensis, has exhibited strong anti-cancer activities in previous studies. Here, we report that PPI exhibits a cytotoxic effect on colon cancer cells. PPI suppressed cell viability and induced autophagic cell death in SW480 cells after 12 and 24 h, with the IC50 values 4.9 ± 0.1 µmol/L and 3.5 ± 0.2 µmol/L, respectively. Furthermore, we found PPI induced time-concentration-dependent autophagy and apoptosis in SW480 cells. In addition, down-regulated AKT/mTOR activity was found in PPI-treated SW480 cells. Increased levels of ROS might link to autophagy and apoptosis because reducing the level of ROS by antioxidant N-acetylcysteine (NAC) treatment mitigated PPI-induced autophagy and apoptosis. Although we did not know the molecular mechanism of how PPI induced ROS production, this is the first study to show that PPI induces ROS production and down-regulates the AKT/mTOR pathway, which subsequently promotes the autophagic cell death and apoptosis of colon cancer cells. This present study reports PPI as a potential therapeutic agent for colon cancer and reveals its underlying mechanisms of action.


Assuntos
Morte Celular Autofágica , Neoplasias do Colo , Apoptose , Autofagia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Diosgenina/análogos & derivados , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012700

RESUMO

Obesity has achieved the appearance of a global epidemic and is a serious cause for concern. The hypothalamus, as the central regulator of energy homeostasis, plays a critical role in regulating food intake and energy expenditure. In this study, we show that TRIM67 in the hypothalamus was responsive to body-energy homeostasis whilst a deficiency of TRIM67 exacerbated metabolic disorders in high-fat-diet-induced obese mice. We found exacerbated neuroinflammation and apoptosis in the hypothalamus of obese TRIM67 KO mice. We also found reduced BDNF in the hypothalamus, which affected the fat sympathetic nervous system innervation and contributed to lipid accumulation in adipose tissue under high-fat-diet exposure. In this study, we reveal potential implications between TRIM67 and the hypothalamic function responding to energy overuptake as well as a consideration for the therapeutic diagnosis of obesity.


Assuntos
Hipotálamo , Obesidade , Proteínas com Motivo Tripartido , Tecido Adiposo/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Proteínas com Motivo Tripartido/genética
7.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806477

RESUMO

Obesity is considered as a major cause for the development and progress of non-alcoholic fatty liver disease (NAFLD), which is one of the most prevalent chronic liver diseases worldwide. However, molecular mechanisms that implicate in obesity-driven pathophysiology of NAFLD are not well defined. Here, we report a tripartite motif (TRIM) protein family member-TRIM67-that is hardly expressed in liver but is inducible on obese conditions. Enhanced expression of TRIM67 activates hepatic inflammation to disturb lipid metabolic homeostasis and promote the progress of NAFLD induced by obesity, while the deficiency in TRIM67 is protective against these pathophysiological processes. Finally, we show that the important transcription coactivator PGC-1α implicates in the response of hepatic TRIM67 to obesity.


Assuntos
Proteínas do Citoesqueleto , Hepatopatia Gordurosa não Alcoólica , Obesidade , Proteínas com Motivo Tripartido , Proteínas do Citoesqueleto/metabolismo , Homeostase , Humanos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Proteínas com Motivo Tripartido/metabolismo
8.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216101

RESUMO

Maturing male germ cells undergo a unique developmental process in spermiogenesis that replaces nucleosomal histones with protamines, the process of which is critical for testicular development and male fertility. The progress of this exchange is regulated by complex mechanisms that are not well understood. Now, with mouse genetic models, we show that barrier-to-autointegration factor-like protein (BAF-L) plays an important role in spermiogenesis and spermatozoal function. BAF-L is a male germ cell marker, whose expression is highly associated with the maturation of male germ cells. The genetic deletion of BAF-L in mice impairs the progress of spermiogenesis and thus male fertility. This effect on male fertility is a consequence of the disturbed homeostasis of histones and protamines in maturing male germ cells, in which the interactions between BAF-L and histones/protamines are implicated. Finally, we show that reduced testicular expression of BAF-L represents a risk factor of human male infertility.


Assuntos
Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Protaminas/metabolismo , Espermatogênese/fisiologia , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Germinativas/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermátides/metabolismo , Testículo/metabolismo
9.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35887011

RESUMO

Tripartite Motif 67 (TRIM67) is an important member of TRIM family proteins, which participates in different cellular processes including immune response, proliferation, differentiation, carcinogenesis, and apoptosis. In recent years, a high fat diet (HFD) has remained one of the main causes of different metabolic diseases and increases in intestinal permeability as well as inducing intestinal inflammation. The current study investigated the protective effects of TRIM67 in the ileum and colon of obese mice. 4-week-old wild-type (WT) C57BL/6N mice and TRIM67 knockout (KO) C57BL/6N mice were selected and randomly divided into four sub-groups, which were fed with control diet (CTR) or HFD for 14 weeks. Samples were collected at the age of 18 weeks for analysis. To construct an in vitro obesity model, over-expressed IPEC-J2 cells (porcine intestinal cells) with Myc-TRIM67 were stimulated with palmitic acid (PA), and its effects on the expression level of TRM67, inflammatory cytokines, and barrier function were evaluated. The KO mice showed pathological lesions in the ileum and colon and this effect was more obvious in KO mice fed with HFD. In addition, KO mice fed with a HFD or CTR diet had increased intestinal inflammation, intestinal permeability, and oxidative stress compared to that WT mice fed with these diets, respectively. Moreover, IPEC-J2 cells were transfected with TRIM67 plasmid to perform the same experiments after stimulation with PA, and the results were found consistent with the in vivo evaluations. Taken together, our study proved for the first time that HFD and TRIM67 KO mice have synergistic damaging effects on the intestine, while TRIM67 plays an important protective role in HFD-induced intestinal damage.


Assuntos
Dieta Hiperlipídica , Obesidade , Animais , Proteínas do Citoesqueleto , Dieta Hiperlipídica/efeitos adversos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/metabolismo , Suínos , Proteínas com Motivo Tripartido/metabolismo
10.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142520

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide, thus treatments for it have attracted lots of interest. In this study, the Salviae miltiorrhizae Radix et Rhizoma (SMRR) polysaccharide was isolated by hot water extraction and ethanol precipitation, and then purified by DEAE anion exchange chromatography and gel filtration. With a high-fat-diet-induced obesity/NAFLD mouse model, we found that consumption of the SMRR polysaccharide could remarkably reverse obesity and its related progress of NAFLD, including attenuated hepatocellular steatosis, hepatic fibrosis and inflammation. In addition, we also reveal the potential mechanism behind these is that the SMRR polysaccharide could regulate the gut-liver axis by modulating the homeostasis of gut microbiota and thereby improving intestinal function.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Salvia miltiorrhiza , Animais , Carboidratos da Dieta , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Etanol , Fígado , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Obesidade/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Salvia miltiorrhiza/química , Água
11.
Virol J ; 18(1): 74, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849568

RESUMO

BACKGROUND: Liver cancer has become one of the most common cancers and has a high mortality rate. Hepatocellular carcinoma is one of the most common liver cancers, and its occurrence and development process are associated with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Main body The serious consequences of chronic hepatitis virus infections are related to the viral invasion strategy. Furthermore, the viral escape mechanism has evolved during long-term struggles with the host. Studies have increasingly shown that suppressor of cytokine signaling (SOCS) proteins participate in the viral escape process. SOCS proteins play an important role in regulating cytokine signaling, particularly the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Cytokines stimulate the expression of SOCS proteins, in turn, SOCS proteins inhibit cytokine signaling by blocking the JAK-STAT signaling pathway, thereby achieving homeostasis. By utilizing SOCS proteins, chronic hepatitis virus infection may destroy the host's antiviral responses to achieve persistent infection. CONCLUSIONS: This review provides recent knowledge regarding the role of SOCS proteins during chronic hepatitis virus infection and provides some new ideas for the future treatment of chronic hepatitis.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite C , Neoplasias Hepáticas , Proteínas Supressoras da Sinalização de Citocina , Carcinoma Hepatocelular/virologia , Citocinas/metabolismo , Humanos , Neoplasias Hepáticas/virologia , Infecção Persistente , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
12.
Virol J ; 17(1): 68, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430029

RESUMO

BACKGROUND: Host shutoff refers to the widespread downregulation of host gene expression and has emerged as a key process that facilitates the reallocation of cellular resources for viral replication and evasion of host antiviral immune responses. MAIN BODY: The Herpesviridae family uses a number of proteins that are responsible for host shutoff by directly targeting messenger RNA (mRNA), including virion host shutoff (VHS) protein and the immediate-early regulatory protein ICP27 of herpes simplex virus types 1 (HSV-1) and the SOX (shutoff and exonuclease) protein and its homologs in Gammaherpesvirinae subfamilies, although these proteins are not homologous. In this review, we highlight evidence that host shutoff is promoted by the VHS, ICP27 and SOX-like proteins and that they also contribute to immune evasion. CONCLUSIONS: Further studies regarding the host shutoff proteins will not only contribute to provide new insights into the viral replication, expression and host immune evasion process, but also provide new molecular targets for the development of antiviral drugs and therapies.


Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Proteínas Imediatamente Precoces/genética , Evasão da Resposta Imune , Ribonucleases/genética , Proteínas Virais/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Expressão Gênica , Herpesvirus Humano 1 , Interações entre Hospedeiro e Microrganismos/genética , Proteínas Imediatamente Precoces/metabolismo , Ribonucleases/metabolismo , Células Vero , Proteínas Virais/metabolismo , Vírion/genética , Replicação Viral
13.
Virol J ; 17(1): 112, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703221

RESUMO

BACKGROUND: eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. MAIN BODY: In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. CONCLUSIONS: This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.


Assuntos
Fator de Iniciação 2 em Eucariotos/genética , Interações Hospedeiro-Patógeno/genética , Viroses/genética , Replicação Viral/genética , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Viral/genética , Proteínas Virais/genética
14.
Molecules ; 24(16)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443330

RESUMO

Soy isoflavones (SIF) are biologically active compounds of non-steroidal and phenolic properties that are richly present in soybeans, which can reduce the body weight and blood lipids of obese animals. Recently, SIF have been reported to affect reproductive ability in obese male rats. However, the specific mechanism has not been well defined. The aim of the current study was to study the possible mechanisms for the effect of SIF administration on obesity induced spermatogenic defects. Obese rats model induced by high-fat diets were established and gavage treated with 0, 50,150 or 450 mg of SIF/kg body weight/day for 4 weeks. Here, our research shows that obesity resulted in spermatogenic degeneration, imbalance of reproductive hormone, testicular oxidative stress and germ cell apoptosis, whereas evidently recovery effects were observed at 150 and 450 mg/kg SIF. We also have discovered that 150 and 450 mg/kg SIF can activate Nrf2/HO-1 pathway in control of Bcl-2, BAX and cleaved caspase-3 expression with implications in antioxidant protection. Our study indicates the potential mechanism of SIF regulating spermatogenic function in obese rats, and provides a scientific experimental basis for the regulation of biological function of obese male reproductive system by SIF.


Assuntos
Glycine max/química , Heme Oxigenase (Desciclizante)/metabolismo , Isoflavonas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Hormônios Esteroides Gonadais/metabolismo , Isoflavonas/química , Masculino , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Ratos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia
15.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652492

RESUMO

Porcine rotavirus is a major cause of acute viral gastroenteritis in suckling piglets, and vaccination is considered to be an effective measure to control these infections. The development of a live mucosal vaccine using Bacillus subtilis spores as an antigen delivery vehicle is a convenient and attractive vaccination strategy against porcine rotavirus. In this study, a shuttle vector was constructed for the spore surface display of the spike protein VP8* from porcine rotavirus (the genotype was G5P[7]). A successful display of the CotB-VP8* fusion protein on the spore surface was confirmed by Western blot and immunofluorescence microscopy analysis. The capacity for immune response generated after immunization with the recombinant strain was evaluated in a mouse model. The intestinal fecal IgA and serum IgG were detected by enzyme-linked-immunosorbent serologic assay (ELISA). Importantly, recombinant strain spores could elicit strong specific mucosal and humoral immune responses. These encouraging results suggest that recombinant B. subtilis BV could provide a strategy for a potential novel application approach to the development of a new and safe mucosal subunit vaccine against porcine rotavirus.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Administração Oral , Animais , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Feminino , Vetores Genéticos , Imunização , Imunoglobulina A/análise , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas não Estruturais Virais/metabolismo
16.
Molecules ; 24(15)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374939

RESUMO

Soy isoflavones are natural active ingredients of soy plants that are beneficial to many metabolic diseases, especially obesity. Many studies have reported that obesity is closely related to visceral fatty acid metabolism, but the effect has not been well defined. In this study, we show that soy isoflavones improve visceral fatty acid metabolism in diet-induced obese male rats, which was indicated by reduced body weight and visceral fat cell area, as well as suppressed visceral fat synthesis and accelerated fat hydrolysis. We also found that common components of soy isoflavones, daidzein and genistein, were able to inhibit the lipid accumulation process in 3T3-L1 cells. Moreover, we showed that soy isoflavones can promote on AMP-activated protein kinase (AMPK) activity both in vivo and in vitro, which may be implicated in lipid metabolism regulation of soy isoflavones. Our study demonstrates the potential of soy isoflavones as a mechanism for regulating lipid homeostasis in visceral adipose tissue, proven to be beneficial for obesity treatment.


Assuntos
Gordura Intra-Abdominal/efeitos dos fármacos , Isoflavonas/farmacologia , Obesidade/tratamento farmacológico , Proteínas Quinases/genética , Células 3T3-L1 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Ratos , Glycine max/química
17.
Molecules ; 24(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909396

RESUMO

Background: The damage to intestinal barrier function plays an important role in the development of obesity and associated diseases. Soy isoflavones are effective natural active components for controlling obesity and reducing the level of blood lipid. Here, we explored whether these effects of soy isoflavones were associated with the intestinal barrier function. Methods and Results: The obese rat models were established by high fat diet feeding. Then, those obese rats were supplemented with soy isoflavones at different doses for 4 weeks. Our results showed that obesity induced the expressions of pro-inflammatory cytokines, decreased the anti-inflammatory cytokine (IL-10) expression, elevated intestinal permeability, altered gut microbiota and exacerbated oxidative damages in colon. The administration of soy isoflavones reversed these changes in obese rats, presenting as the improvement of intestinal immune function and permeability, attenuation of oxidative damage, increase in the fraction of beneficial bacteria producing short-chain fatty acids and short-chain fatty acid production, and reduction in harmful bacteria. Furthermore, soy isoflavones blocked the expressions of TLR4 and NF-κB in the colons of the obese rats. Conclusions: Soy isoflavones could improve obesity through the attenuation of intestinal oxidative stress, recovery of immune and mucosal barrier, as well as re-balance of intestinal gut microbiota.


Assuntos
Colo/efeitos dos fármacos , Colo/imunologia , Dieta Hiperlipídica/efeitos adversos , Imunomodulação/efeitos dos fármacos , Isoflavonas/farmacologia , Obesidade/etiologia , Animais , Biodiversidade , Biomarcadores , Peso Corporal/efeitos dos fármacos , Colo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Regulação da Expressão Gênica , Imunomodulação/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Isoflavonas/química , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais , Ratos , Transdução de Sinais , Glycine max/química , Receptor 4 Toll-Like/metabolismo
18.
Intervirology ; 61(5): 230-236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30654358

RESUMO

OBJECTIVE: To establish an efficient, convenient and quantitative method for the clinical detection of the duck-origin goose parvovirus. METHOD: In the present study, a real-time polymerase chain reaction (PCR) method was established for detecting the duck-origin goose parvovirus using the fluorescent chimeric dye SYBR Green II. Specific primers were designed to target a highly conserved region of the VP3 gene of the duck-origin goose parvovirus. RESULTS: This method was able to detect a minimum of 19.6 copies/µL of viral genomic DNA. Results showed that this method was faster and had a higher sensitivity than the traditional PCR in the clinical specimen test. In this paper, we developed a rapid, sensitive detection and quantitative analysis technology for the duck-origin goose parvovirus by real-time PCR assay. CONCLUSION: This test provides improved technical support for studies regarding the clinical diagnosis and epidemiological investigations of the duck-origin goose parvovirus.


Assuntos
Doenças das Aves/diagnóstico , Compostos Orgânicos/metabolismo , Infecções por Parvoviridae/veterinária , Parvovirinae/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Coloração e Rotulagem/métodos , Animais , Doenças das Aves/virologia , China , Patos , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/virologia , Sensibilidade e Especificidade , Fatores de Tempo
19.
Metab Brain Dis ; 33(5): 1483-1492, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29948652

RESUMO

Hypothalamus-pituitary-adrenal (HPA) axis, as the key moderator in energy metabolism, plays an important role in diabetes. The endogenous cannabinoid system (eCBs) involves in neuronal functions, and simultaneously cannabinoid receptors are almost expressed in all regions of the hypothalamus according to a spate of reports. However, few data investigate the changes of eCBs and HPA axis in type 2 diabetes. In this study, five diabetes mellitus rhesus monkeys, five prediabetes rhesus monkeys and five healthy rhesus monkeys were observed. In the present study, we detected cell swelling and necrosis extensively in the paraventricular nucleus (PVN) and neurohypophysis in prediabetes and overt diabetes monkeys. The adrenocorticotropic hormone in the pituitary gland, adrenocorticotropic hormone receptor, and 11ß-hydroxysteroid dehydrogenase in the adrenal gland were all hyper-secreted and expressed from healthy to overt diabetes. Meanwhile, the cortisol concentration in the adrenal gland was increased along with the progress of diabetes. It could be concluded that hyperfunction of the HPA axis exists in the type 2 Diabetes pathogenesis. However, we also found a weakened expression and secretion of corticotrophin releasing hormone and glucocorticoids receptor in PVN. The expression of corticotropin releasing hormone receptor 1 in pituitary gland decreased in prediabetes monkeys, but increased in overt diabetes monkeys. The downregulation of cannabinoid receptor 1 and upregulation of monoglycerol lipase and fatty acid amide hydrolase in PVN was involved in the pathogenesis of type 2 diabetes. Collectively, we can conclude that changes in endocannabinoid hydrolase and cannabinoid receptor might indicate the effect of downregulation of eCBs. It can be assumed that hyper-function of the HPA axis from healthy to overt diabetes is due to the undermining inhibition of eCBs. However, the regulatory mechanism of eCBs targets on the HPA axis need to be further explored.


Assuntos
Amidoidrolases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Glândulas Suprarrenais/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Endocanabinoides/metabolismo , Regulação da Expressão Gênica , Hidrocortisona/metabolismo , Hipotálamo/metabolismo , Macaca mulatta , Masculino
20.
Kidney Blood Press Res ; 41(6): 911-918, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27889773

RESUMO

BACKGROUND/AIMS: The aminolycoside Gentamicin is a widely used antibiotic, applied in equine medicine. Despite its clinical use, concerns remain regarding the potential toxic side-effects, such as nephrotoxicity. Early detection of renal damage is critical in preclinical drug development. This study was aimed to determine whether kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) may be early indicators in the assessment of Gentamycin-induced nephrotoxicity. METHODS: In our study, a model of Gentamicin-induced nephrotoxicity in male Sprague Dawley rats treated for up to 7 days at 50 or 100mg/kg/day was used to monitor the expressions of novel biomarkers of renal toxicity during the progression of acute kidney injury (AKI). Additionally, biomarkers were assessed in human kidney proximal epithelial cells (HK-2) treated with Gentamicin for 2, 6, 12, 24, 36 or 48h in vitro. RESULTS: Repeated administration of Gentamicin to rats for 1, 3, or 7 days resulted in a dose- and time-dependent increase in the expression of KIM-1 and NGAL. The expressions of the two biomarkers changed prior to renal tubule damage and increases in serum creatinine (SCr) and blood urea nitrogen (BUN) levels, suggesting their usefulness for predicting Gentamicin-induced acute kidney injury (AKI) in vivo. CONCLUSIONS: In contrast, no significant increase in the expression of the biomarker genes and proteins were evident in HK-2 cells after treated by Gentamycin for up to 48h, suggesting that they may not be suitable endpoints for sensitive detection of nephrotoxic effects in vitro.


Assuntos
Injúria Renal Aguda/sangue , Moléculas de Adesão Celular/sangue , Lipocalinas/sangue , Proteínas Proto-Oncogênicas/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Proteínas de Fase Aguda , Animais , Biomarcadores/sangue , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Gentamicinas/toxicidade , Humanos , Lipocalina-2 , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA