Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Proteome Res ; 23(1): 449-464, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38109854

RESUMO

Cancer's high incidence and death rate jeopardize human health and life, and it has become a global public health issue. Some members of NPCs have been studied in a few cancers, but comprehensive and prognostic analysis is lacking in most cancers. In this study, we used the Cancer Genome Atlas (TCGA) data genomics and transcriptome technology to examine the differential expression and prognosis of NPCs in 33 cancer samples, as well as to investigate NPCs mutations and their effect on patient prognosis and to evaluate the methylation level of NPCs in cancer. The linked mechanisms and medication resistance were subsequently investigated in order to investigate prospective tumor therapy approaches. The relationships between NPCs and immune infiltration, immune cells, immunological regulatory substances, and immune pathways were also investigated. Finally, the LUAD and KICH prognostic prediction models were built using univariate and multivariate COX regression analysis. Additionally, the mRNA and protein levels of NPCs were also identified.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Estudos Prospectivos , Genômica , Análise Multivariada , Mutação , Neoplasias/genética , Prognóstico , Proteína C1 de Niemann-Pick , Proteínas de Transporte Vesicular , Proteínas de Membrana Transportadoras
2.
J Nanobiotechnology ; 22(1): 75, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408974

RESUMO

The capacity to identify small amounts of pathogens in real samples is extremely useful. Herein, we proposed a sensitive platform for detecting pathogens using cyclic DNA nanostructure@AuNP tags (CDNA) and a cascade primer exchange reaction (cPER). This platform employs wheat germ agglutinin-modified Fe3O4@Au magnetic nanoparticles (WMRs) to bind the E. coli O157:H7, and then triggers the cPER to generate branched DNA products for CDNA tag hybridization with high stability and amplified SERS signals. It can identify target pathogens as low as 1.91 CFU/mL and discriminate E. coli O157:H7 in complex samples such as water, milk, and serum, demonstrating comparable or greater sensitivity and accuracy than traditional qPCR. Moreover, the developed platform can detect low levels of E. coli O157:H7 in mouse serum, allowing the discrimination of mice with early-stage infection. Thus, this platform holds promise for food analysis and early infection diagnosis.


Assuntos
Escherichia coli O157 , Nanopartículas , Animais , Camundongos , DNA Complementar , DNA , Escherichia coli O157/genética , Microbiologia de Alimentos
3.
Angew Chem Int Ed Engl ; 63(10): e202318646, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38231189

RESUMO

Generally, two-dimensional gold nanomaterials have unique properties and functions that offer exciting application prospects. However, the crystal phases of these materials tend to be limited to the thermodynamically stable crystal structure. Herein, we report a DNA framework-templated approach for the ambient aqueous synthesis of freestanding and microscale amorphous gold nanosheets with ultrathin sub-nanometer thickness. We observe that extended single-stranded DNA on DNA nanosheets can induce site-specific metallization and enable precise modification of the metalized nanostructures at predefined positions. More importantly, the as-prepared gold nanosheets can serve as an electrocatalyst for glucose oxidase-catalyzed aerobic oxidation, exhibiting enhanced electrocatalytic activity (~3-fold) relative to discrete gold nanoclusters owing to a larger electrochemical active area and wider band gap. The proposed DNA framework-templated metallization strategy is expected to be applicable in a broad range of fields, from catalysis to new energy materials.


Assuntos
Ouro , Nanoestruturas , Ouro/química , Nanoestruturas/química , Oxirredução , DNA , Água
4.
Angew Chem Int Ed Engl ; 63(19): e202400551, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38416545

RESUMO

Detecting low-frequency DNA mutations hotspots cluster is critical for cancer diagnosis but remains challenging. Quantitative PCR (qPCR) is constrained by sensitivity, and allele-specific PCR is restricted by throughput. Here we develop a long blocker displacement amplification (LBDA) coupled with qPCR for ultrasensitive and multiplexed variants detection. By designing long blocker oligos to perfectly match wildtype sequences while mispairing with mutants, long blockers enable 14-44 nt enrichment regions which is 2-fold longer than normal BDA in the experiments. For wild template with a specific nucleotide, LBDA can detect different mutation types down to 0.5 % variant allele frequency (VAF) in one reaction, with median enrichment fold of 1,000 on 21 mutant DNA templates compared to the wild type. We applied LBDA-qPCR to detect KRAS and NRAS mutation hotspots, utilizing a single plex assay capable of covering 81 mutations and tested in synthetic templates and colorectal cancer tissue samples. Moreover, the mutation types were verified through Sanger sequencing, demonstrating concordance with results obtained from next generation sequencing. Overall, LBDA-qPCR provides a simple yet ultrasensitive approach for multiplexed detection of low VAF mutations hotspots, presenting a powerful tool for cancer diagnosis and monitoring.


Assuntos
Mutação , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Proteínas de Membrana/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , GTP Fosfo-Hidrolases/genética
5.
Funct Integr Genomics ; 23(3): 264, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37541978

RESUMO

Liver cancer is a cunning malignancy with a high incidence and mortality rate among cancers worldwide. The NPC gene family members (NPCs: NPC1, NPC2, and NPC1L1) are closely linked to the development of multiple cancers, but their role in liver cancer remains unclear. As a result, we must investigate their functions in liver hepatocellular carcinoma (LIHC). NPCs were significantly differentially expressed between normal and LIHC tissues, with a high mutation frequency in LIHC. The ROC curve analysis revealed that NPC1/NPC2 had high diagnostic and prognostic values in LIHC. NPC1 expression was also found to be negatively correlated with its methylation level. The differentially expressed genes between high and low NPC1 expression groups in LIHC were mainly related to channel activity, transporter complexes, and plasma membrane adhesion molecules. Additionally, NPC1 expression was significantly associated with multiple immune cells and immunization checkpoints. It was hypothesized that a TUG1/SNHG4-miR-148a-3p-NPC1 regulatory axis is associated with hepatocarcinogenesis. Finally, the protein expression of NPC1 in LIHC tissues and paraneoplastic tissues was detected, and NPC1-knockdown HepG2 cells (NPC1KO) inhibited the proliferation, migration, and invasion. This study helped to identify new prognostic markers and potential immunotherapeutic targets for LIHC and revealed the molecular mechanisms underlying NPC1 regulation in LIHC. The NPCs play a key role in the prognosis and diagnosis of LIHC and may be an important indicator for LIHC prognosis and diagnosis; NPC1 might be a potential therapeutic target in LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Multiômica
6.
Anal Chem ; 95(39): 14805-14815, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738392

RESUMO

The DNA frame structure as a natural shell to stably shield the sequence-templated Ag nanocluster core (csAgNC) is intriguing yet challenging for applicable fluorescence biosensing, for which the elaborate programming of a cluster scaffold inside a DNA-based cage to guide csAgNC nucleation might be crucial. Herein, we report the first design of a symmetric tetrahedral DNA nanocage (TDC) that was self-assembled in a one-pot process using a C-rich csAgNC template strand and four single strands. Inside the as-constructed soft TDC architecture, the template sequence was logically bridged from one side to another, not in the same face, thereby guiding the in situ synthesis of emissive csAgNC. Because of the strong electron-repulsive capability of the negatively charged TDC, the as-formed csAgNC displayed significantly improved fluorescence stability and superb spectral behavior. By incorporating the recognizable modules of targeted microRNAs (miRNAs) in one vertex of the TDC, an updated TDC (uTDC) biosensing platform was established via the photoinduced electron transfer effect between the emissive csAgNC reporter and hemin/G-quadruplex (hG4) conjugate. Because of the target-interrupted csAgNC switching in three states with the spatial proximity and separation to hG4, an "on-off-on" fluorescing signal response was executed, thus achieving a wide linear range to miRNAs and a limit of detection down to picomoles. Without complicated chemical modifications, this simpler and more cost-effective strategy offered accurate cell imaging of miRNAs, further suggesting possible therapeutic applications.

7.
J Nanobiotechnology ; 21(1): 328, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689652

RESUMO

Small extracellular-vesicule-associated microRNA (sEV-miRNA) is an important biomarker for cancer diagnosis. However, rapid and sensitive detection of low-abundance sEV-miRNA in clinical samples is challenging. Herein, a simple electrochemical biosensor that uses a DNA nanowire to localize catalytic hairpin assembly (CHA), also called domino-type localized catalytic hairpin assembly (DT-LCHA), has been proposed for sEV-miRNA1246 detection. The DT-LCHA offers triple amplification, (i). CHA system was localized in DNA nanowire, which shorten the distance between hairpin substrate, inducing the high collision efficiency of H1 and H2 and domino effect. Then, larger numbers of CHAs were triggered, capture probe bind DT-LCHA by exposed c sites. (ii) The DNA nanowire can load large number of electroactive substance RuHex as amplified electrochemical signal tags. (iii) multiple DT-LCHA was carried by the DNA nanowire, only one CHA was triggered, the DNA nanowire was trapped by the capture probe, which greatly improve the detection sensitivity, especially when the target concentration is extremely low. Owing to the triple signal amplification in this strategy, sEV-miRNA at a concentration of as low as 24.55 aM can be detected in 20 min with good specificity. The accuracy of the measurements was also confirmed using reverse transcription quantitative polymerase chain reaction. Furthermore, the platform showed good performance in discriminating healthy donors from patients with early gastric cancer (area under the curve [AUC]: 0.96) and was equally able to discriminate between benign gastric tumors and early cancers (AUC: 0.77). Thus, the platform has substantial potential in biosensing and clinical diagnosis.


Assuntos
MicroRNAs , Humanos , Anilidas , Catálise , Leucina
8.
Mikrochim Acta ; 190(2): 65, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692585

RESUMO

Tumor cells in blood circulation (CTCs) are vital biomarkers for noninvasive cancer diagnosis. We developed a simple and sensitive electrochemical biosensor based on dual-toehold accelerated catalytic hairpin assembly (DCHA) to distinguish CTCs from blood cells. In the presence of CTCs, the aptamer probe initiates the DCHA process, which produces amplified electrochemical signals. Compared with conventional catalytic hairpin assembly (CHA), the proposed DCHA showed high sensitivity, which led to a broader working range of 10-1000 cells mL-1 with a limit of detection of 4 cells mL-1. Furthermore, our method exhibited an excellent capability of distinguishing malignant breast cancers from healthy people, with a sensitivity of 97.4%. In summary, we have established an enzyme-free, easy-to-operate, and nondisruptive method for detecting circulating tumor cells in blood circulation based on the DCHA strategy. Its versatility and simplicity will make it more widely used in clinical diagnosis and biomedical research.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Feminino , Técnicas Biossensoriais/métodos , Catálise
9.
Nano Lett ; 22(4): 1618-1625, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156821

RESUMO

Circulating tumor cells (CTCs) are noninvasive biomarkers with great potential for assessing neoplastic diseases. However, the enrichment bias toward heterogeneous CTCs remains to be minimized. Herein, a DNAzyme-catalyzed proximal protein biotinylation (DPPB) strategy is established for unbiased CTCs enrichment, employing DNA-framework-based, aptamer-coupled DNAzymes that bind to the surface marker of CTCs and subsequently biotinylated membrane proteins in situ. The DNA framework enables the construction of multivalent DNAzyme and serves as steric hindrance to avoid undesired interaction between DNAzymes and aptamer, leading to efficient binding and biotinylation. Compared with a biotinylated-aptamer strategy, fivefold lower bias of cell subpopulations was achieved by DPPB before and after capture, which enabled a 4.6-fold performance for CTCs analysis in clinic blood samples. DPPB is envisioned to offer a new solution for CTC-based cancer diagnostics.


Assuntos
Aptâmeros de Nucleotídeos , DNA Catalítico , Células Neoplásicas Circulantes , Biomarcadores Tumorais/metabolismo , Biotinilação , Catálise , Humanos , Células Neoplásicas Circulantes/patologia
10.
Nano Lett ; 22(17): 7173-7179, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35977401

RESUMO

A myriad of DNA origami nanostructures have been demonstrated in various intriguing applications. In pursuit of facile yet high-yield synthesis, the mechanisms underlying DNA origami folding need to be resolved. Here, we visualize the folding processes of several multidomain DNA origami structures under ambient annealing conditions in solution using atomic force microscopy with submolecular resolution. We reveal the coexistence of diverse transitional structures that might result in the same prescribed products. Based on the experimental observations and the simulation of the energy landscapes, we propose the heterogeneity of the folding pathways of multidomain DNA origami structures. Our findings may contribute to understanding the high-yield folding mechanism of DNA origami.


Assuntos
DNA , Nanoestruturas , DNA/química , Microscopia de Força Atômica , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico
11.
J Am Chem Soc ; 144(14): 6311-6320, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353520

RESUMO

Nanozymes have emerged as a class of novel catalytic nanomaterials that show great potential to substitute natural enzymes in various applications. Nevertheless, spatial organization of multiple subunits in a nanozyme to rationally engineer its catalytic properties remains to be a grand challenge. Here, we report a DNA-based approach to encode the organization of gold nanoparticle clusters (GNCs) for the construction of programmable enzyme equivalents (PEEs). We find that single-stranded (ss-) DNA scaffolds can self-fold into nanostructures with prescribed poly-adenine (polyA) loops and double-stranded stems and that the polyA loops serve as specific sites for seed-free nucleation and growth of GNCs with well-defined particle numbers and interparticle spaces. A spectrum of GNCs, ranging from oligomers with discrete particle numbers (2-4) to polymer-like chains, are in situ synthesized in this manner. The polymeric GNCs with multiple spatially organized nanoparticles as subunits show programmable peroxidase-like catalytic activity that can be tuned by the scaffold size and the inter-polyA spacer length. This study thus opens new routes to the rational design of nanozymes for various biological and biomedical applications.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Catálise , DNA de Cadeia Simples , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química
12.
Small ; 18(36): e2107640, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35119201

RESUMO

The cell microenvironment plays a crucial role in regulating cell behavior and fate in physiological and pathological processes. As the fundamental component of the cell microenvironment, extracellular matrix (ECM) typically possesses complex ordered structures and provides essential physical and chemical cues to the cells. Hydrogels have attracted much attention in recapitulating the ECM. Compared to natural and synthetic polymer hydrogels, DNA hydrogels have unique programmable capability, which endows the material precise structural customization and tunable properties. This review focuses on recent advances in programmable DNA hydrogels as artificial extracellular matrix, particularly the pure DNA hydrogels. It introduces the classification, design, and assembly of DNA hydrogels, and then summarizes the state-of-the-art achievements in cell encapsulation, cell culture, and tissue engineering with DNA hydrogels. Ultimately, the challenges and prospects for cellular applications of DNA hydrogels are delivered.


Assuntos
Matriz Extracelular , Hidrogéis , DNA/química , Matriz Extracelular/química , Hidrogéis/química , Polímeros/análise , Engenharia Tecidual
13.
J Nanobiotechnology ; 20(1): 503, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457020

RESUMO

The profiling of small extracellular vesicle-associated microRNAs (sEV-miRNAs) plays a vital role in cancer diagnosis and monitoring. However, detecting sEV-miRNAs with low expression in clinical samples remains challenging. Herein, we propose a novel electrochemical biosensor using localized DNA tetrahedron-assisted catalytic hairpin assembly (LDT-CHA) for sEV-miRNA determination. The LDT-CHA contained localized DNA tetrahedrons with CHA substrates, leveraging an efficient localized reaction to enable sensitive and rapid sEV-miRNA measurement. Based on the LDT-CHA, the proposed platform can quantitatively detect sEV-miRNA down to 25 aM in 30 min with outstanding specificity. For accurate diagnosis of gastric cancer patients, a combination of LDT-CHA and a panel of four sEV-miRNAs (sEV-miR-1246, sEV-miR-21, sEV-miR-183-5P, and sEV-miR-142-5P) was employed in a gastric cancer cohort. Compared with diagnosis with single sEV-miRNA, the proposed platform demonstrated a higher accuracy of 88.3% for early gastric tumor diagnoses with higher efficiency (AUC: 0.883) and great potential for treatment monitoring. Thus, this study provides a promising method for the bioanalysis and determination of the clinical applications of LDT-CHA.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Gástricas , Humanos , MicroRNAs/genética , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , DNA , Catálise
14.
Energy (Oxf) ; 239: 122166, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34608350

RESUMO

The COVID-19 pandemic affects all the aspects of modern society worldwide, especially in the power sector. Measures of flexibility enhancement are regarded as solutions to guarantee reliable and flexible electricity supply in such an emergency. This study aims at investigating the impact of flexibility enhancement measures (electricity storage and flexible demand) in different situations of the preliminary COVID-19 pandemic. Case studies in different regions (Denmark, the Netherlands, and the Sichuan province of China) are conducted and assessed using the hourly simulation tool EnergyPLAN. These regions own different electricity supply mix and level of renewable electricity. It is found that the flexible demand measure within one day or one week can hardly eliminate the electricity imbalance caused by either the pandemic or the increasing renewable electricity. The monthly flexible demand is effective for balancing, but its potential in these regions is not enough. However, electricity storage measure enhances the electricity balance even during the most extreme situation of the pandemic. From the economic perspective, electricity storage measure leads to an increase of up to 15% in total system costs, while flexible demand measure has a negligible effect on costs. This study serves as the first step to understand the performance of flexibility enhancement measures in the power sector under the shock of a pandemic.

15.
Renew Energy ; 191: 261-277, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35465236

RESUMO

The outbreak of the COVID-19 pandemic has brought significant changes to the power sector. This study proposes general and coherent methodological steps to explore the future impact of lockdown measures on the power sector. In a case study from the Netherlands, two lockdown levels were defined and simulated to identify the influence of the pandemic upon the sector. Moreover, four renewable scenarios were developed to represent the green transition of the Netherlands' power sector up to 2035. For this future power sector, the results show that the green transition can achieve a reduction of 65% in CO2 emissions and 20% in power sector cost. Under the implementation of a simulated lockdown level, electricity demand decreased by 6.3% under Level 1 and 11.9% under Level 2 in 2035. The influences of lockdowns on future power sectors differ with respect to scenario. In addition, Lockdown Level 1 leads to a reduction of 8-12% in emissions and a reduction of 6-8% in cost, and Lockdown Level 2 expands this reduction to 15-21% in emissions and 11-13% in cost. The findings of this exploratory study can elucidate what may happen in the future green power sector if such event arises.

16.
BMC Cancer ; 21(1): 981, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470602

RESUMO

BACKGROUND: Paclitaxel (Taxol) is a microtubule-stabilizing drug used to treat several solid tumors, including ovarian, breast, non-small cell lung, and pancreatic cancers. The current treatment of ovarian cancer is chemotherapy using paclitaxel in combination with carboplatin as a frontline agent, and paclitaxel is also used in salvage treatment as a second line drug with a dose intensive regimen following recurrence. More recently, a dose dense approach for paclitaxel has been used to treat metastatic breast cancer with success. Paclitaxel binds to beta tubulin with high affinity and stabilizes microtubule bundles. As a consequence of targeting microtubules, paclitaxel kills cancer cells through inhibition of mitosis, causing mitotic catastrophes, and by additional, not yet well defined non-mitotic mechanism(s). RESULTS: In exploring methods to modulate activity of paclitaxel in causing cancer cell death, we unexpectedly found that a brief exposure of paclitaxel-treated cells in culture to low intensity ultrasound waves prevented the paclitaxel-induced cytotoxicity and death of the cancer cells. The treatment with ultrasound shock waves was found to transiently disrupt the microtubule cytoskeleton and to eliminate paclitaxel-induced rigid microtubule bundles. When cellular microtubules were labelled with a fluorescent paclitaxel analog, exposure to ultrasound waves led to the disassembly of the labeled microtubules and localization of the signals to perinuclear compartments, which were determined to be lysosomes. CONCLUSIONS: We suggest that ultrasound disrupts the paclitaxel-induced rigid microtubule cytoskeleton, generating paclitaxel bound fragments that undergo degradation. A new microtubule network forms from tubulins that are not bound by paclitaxel. Hence, ultrasound shock waves are able to abolish paclitaxel impact on microtubules. Thus, our results demonstrate that a brief exposure to low intensity ultrasound can reduce and/or eliminate cytotoxicity associated with paclitaxel treatment of cancer cells in cultures.


Assuntos
Neoplasias da Mama/patologia , Microtúbulos/patologia , Mitose , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Ondas Ultrassônicas , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Proliferação de Células , Citoesqueleto/metabolismo , Feminino , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/efeitos da radiação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/radioterapia , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
17.
J Gastroenterol Hepatol ; 36(3): 694-699, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32721038

RESUMO

BACKGROUND AND AIM: Patients with 2019 novel coronavirus disease (COVID-19) could present with gastrointestinal symptoms without fever or respiratory manifestations, which could be overlooked by health-care providers. We aimed to evaluate the clinical characteristics of COVID-19 in patients presenting with initial gastrointestinal symptoms. METHODS: We evaluated all confirmed cases of COVID-19 in Zhongnan Hospital of Wuhan University between January 10 and February 29, 2020. We divided these patients into two groups: patients with initial gastrointestinal symptoms (group A, n = 183) and patients with respiratory syndrome and/or fever (group B, n = 1228). The clinical characteristics, radiological features, and laboratory data were assessed. RESULTS: The clinical procedures of both groups underwent 1-2 weeks rising period and were downward trend at 3 weeks; less than 5% of patients progressed to critical illness. In both groups, mean leukocyte count (P = 0.354) and lymphocyte count (P = 0.386) were below normal, and C-reactive protein level was elevated (P = 0.412). There was mild liver function injury (aspartate aminotransferase, 65.8 ± 12.7 vs 67.4 ± 9.3 U/L, P = 0.246; alanine aminotransferase, 66.4 ± 13.2 vs 69.6 ± 12.7 U/L, P = 0.352), and normal renal function was intact (blood urea nitrogen 6.4 ± 2.5 vs 5.6 ± 2.8 mmol/L P = 0.358; creatinine 85.7 ± 37.2, 91.2 ± 32.6 µmol/L, P = 0.297). After a series of treatment, 176 and 1169 were stable and alive in groups A and B, respectively. The survival rate did not differ significantly between the groups (P = 0.313). CONCLUSION: COVID-19 patients presented with initial gastrointestinal symptoms had similar clinical characteristics and outcomes, when compared with patients with fever and respiratory symptoms.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Gastroenteropatias/virologia , Adulto , Idoso , COVID-19/complicações , COVID-19/mortalidade , Estudos de Casos e Controles , China/epidemiologia , Feminino , Gastroenteropatias/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Índice de Gravidade de Doença , Análise de Sobrevida
18.
Mikrochim Acta ; 187(5): 259, 2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248380

RESUMO

A fluorescent platform was developed for the determination and visualization of circulating tumor cells by a toehold-mediated bifunctional DNA nanomachine. In the presence of target tumor cells, the DNA nanomachine was activated. Multiple DNA products were formed, including dendritic DNA products and double-strand DNA products. Dendritic DNA products bound to their target cells for the visualization, while double-strand DNA products were released for the determination of tumor cells. At fluorescence excitation and emission wavelengths of 530 and 550 nm, this method could detect as low as 43 cells/mL (S/N = 3) with a linear range of 100 to 10,000 cells/mL. In clinical hydrothorax samples, this platform exhibited high reliability with a recovery of 93 to 116%. At the fluorescence excitation and emission wavelengths of 490 and 515 nm, the specificity and biocompatibility of this method were further verified by tumor cells imaging. Furthermore, the robustness of the toehold-mediated bifunctional DNA nanomachine was demonstrated by the specific gene mutation detection in single-cell analysis. Graphical abstract Schematic illustration of the fluorescent immunosensor for determination and imaging of circulating tumor cells. The method is based on aptamer-based recognition and toehold-mediated bifunctional DNA nanomachine.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Células Neoplásicas Circulantes , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Corantes Fluorescentes/química , Humanos , Hidrotórax , Limite de Detecção , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Células Neoplásicas Circulantes/química , Hibridização de Ácido Nucleico , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Espectrometria de Fluorescência/métodos , Nucleolina
19.
Am J Respir Cell Mol Biol ; 61(3): 341-354, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30897338

RESUMO

Hyperoxia plays a key role in the development of bronchopulmonary dysplasia (BPD), a chronic lung disease of preterm infants. Infants with BPD often have brain injury that leads to long-term neurodevelopmental impairment, but the underlying mechanisms that control BPD-induced neurodevelopmental impairment remain unclear. Our previous studies have shown that hyperoxia-induced BPD in rodents is associated with lung inflammasome activation. Here, we tested the hypothesis that hyperoxia-induced lung and brain injury is mediated by inflammasome activation, and that inhibition of caspase-1, a key component of the inflammasome, attenuates hyperoxia-induced lung and brain injury in neonatal mice. C57/BL6 mouse pups were randomized to receive daily intraperitoneal injections of Ac-YVAD-CMK, an irreversible caspase-1 inhibitor, or placebo during exposure to room air or hyperoxia (85% O2) for 10 days. We found that hyperoxia activated the NLRP1 inflammasome, increased production of mature IL-1ß, and upregulated expression of p30 gasdermin-D (GSDMD), the active form of GSDMD that is responsible for the programmed cell death mechanism of pyroptosis in both lung and brain tissue. Importantly, we show that inhibition of caspase-1 decreased IL-1ß activation and p30 GSDMD expression, and improved alveolar and vascular development in hyperoxia-exposed lungs. Moreover, caspase-1 inhibition also promoted cell proliferation in the subgranular zone and subventricular zone of hyperoxia-exposed brains, resulting in lessened atrophy of these zones. Thus, the inflammasome plays a critical role in hyperoxia-induced neonatal lung and brain injury, and targeting this pathway may be beneficial for the prevention of lung and brain injury in preterm infants.


Assuntos
Lesões Encefálicas/metabolismo , Caspase 1/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células/fisiologia , Humanos , Hipertensão Pulmonar/complicações , Recém-Nascido , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Serpinas/farmacologia , Proteínas Virais/farmacologia
20.
Br J Nutr ; 119(7): 748-758, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29569543

RESUMO

Aplastic anaemia (AA) is characterised by pancytopenia resulting from a marked reduction in haemopoietic stem cells (HSC). The regulation of haemopoiesis depends on the interaction between HSC and various cells of the bone marrow (BM) microenvironment, including BM-derived mesenchymal stromal cells (BMSC). The purpose of this study was to analyse the biological effect of nutritional supplement (NS), a dietary supplement consisting of thirty-six compounds: amino acids, nucleotides, vitamins and micronutrients on the BMSC of AA rats. The AA rat model was established by irradiating X-ray (2·5 Gy) and intraperitoneal injections of cyclophosphamide (35 mg/kg; Sigma) and chloramphenicol (35 mg/kg; Sigma). Then AA rats were fed with NS in a dose-dependent manner (2266·95, 1511·3, 1057·91 mg/kg d) by intragastric administration. The effect of NS on the BMSC of AA rats was analysed. As compared with AA rats, NS treatment significantly improved these peripheral blood parameters and stimulated the proliferation of total femoral nucleated cells. NS treatment affected proliferative behaviour of BMSC and suppressed BMSC differentiation to adipocytes. Furthermore, NS treatment of AA rats accelerated osteogenic differentiation of BMSC and enhanced bone mineral density. Co-incubation of HSC with mesenchymal stromal cells and serum from AA rats subjected to high-dose NS markedly improved the yield of CD34+cells. Protein microarray analysis revealed that there were eleven differentially expressed proteins in the NS group compared with the AA rat group. The identified specific NS might be implicated in rehabilitation of BMSC in AA rats, suggesting their potential of nutritional support in AA treatment.


Assuntos
Anemia Aplástica/induzido quimicamente , Suplementos Nutricionais , Células-Tronco Mesenquimais/efeitos dos fármacos , Aminoácidos/administração & dosagem , Aminoácidos/farmacologia , Anemia Aplástica/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Células-Tronco Hematopoéticas/efeitos dos fármacos , Masculino , Metais/administração & dosagem , Metais/farmacologia , Nucleotídeos/administração & dosagem , Nucleotídeos/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Vitaminas/administração & dosagem , Vitaminas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA