Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 116(6): 984-95, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21143600

RESUMO

Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine (NE) and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by ß-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of ß1-adrenergic receptors leads to the rapid phosphorylation of cAMP response element binding protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. NE-mediated CREB phosphorylation requires ß1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of ß1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of ß1-adrenergic receptors produces cAMP production, but surprisingly, ß1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of ß1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which NE and ß1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how NE and ß1-adrenergic receptors may affect striatal physiology.


Assuntos
Proteína de Ligação a CREB/metabolismo , Corpo Estriado/citologia , Neurônios/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais/fisiologia , Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Proteína de Ligação a CREB/genética , Células Cultivadas , Quelantes/farmacologia , AMP Cíclico/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Norepinefrina/farmacologia , Fosforilação/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/genética , Receptores Adrenérgicos beta 1/genética , Transdução de Sinais/efeitos dos fármacos
2.
J Neurosci ; 28(12): 3159-69, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18354019

RESUMO

During the development and maturation of sensory neurons, afferent activity is required for normal maintenance. There exists a developmental window of time when auditory neurons, including neurons of the anteroventral cochlear nucleus (AVCN), depend on afferent input for survival. This period of time is often referred to as a critical period. The cellular and molecular mechanisms that underlie AVCN neuron susceptibility to deafferentation-induced death remain unknown. Here, we show that only during this critical period deafferentation of mouse AVCN neurons by in vivo cochlea removal results in rapid nuclear translocation and activation of the transcription factor NFATc4 (nuclear factor of activated T-cells isoform 4). NFAT activation is abolished by in vivo treatment with the calcineurin inhibitor FK506 and the specific NFAT-inhibitor 11R-VIVIT. Inhibition of NFAT significantly attenuates deafferentation-induced apoptosis of AVCN neurons and abolishes NFAT-mediated expression of FasL, an initiator of apoptotic pathways, in the cochlear nucleus. These data suggest that NFAT-mediated gene expression plays a role in deafferentation-induced apoptosis of cochlear nucleus neurons during a developmental critical period.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Núcleo Coclear/citologia , Período Crítico Psicológico , Fatores de Transcrição NFATC/metabolismo , Neurônios Aferentes/fisiologia , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Fracionamento Celular/métodos , Núcleo Coclear/crescimento & desenvolvimento , Denervação , Inibidores Enzimáticos/farmacologia , Proteína Ligante Fas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Marcação In Situ das Extremidades Cortadas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/efeitos dos fármacos , Oligopeptídeos/farmacologia , Tacrolimo/farmacologia , Fatores de Tempo
3.
Eur J Neurosci ; 27(1): 31-42, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18184313

RESUMO

Exposure to drugs of abuse activates gene expression and protein synthesis that result in long-lasting adaptations in striatal signaling. Therefore, identification of the transcription factors that couple drug exposure to gene expression is of particular importance. Members of the nuclear factor of activated T-cells (NFATc) family of transcription factors have recently been implicated in shaping neuronal function throughout the rodent nervous system. Here we demonstrate that regulation of NFAT-mediated gene expression may also be a factor in drug-induced changes to striatal functioning. In cultured rat striatal neurons, stimulation of D1 dopamine receptors induces NFAT-dependent transcription through activation of L-type calcium channels. Additionally, the genes encoding inositol-1,4,5-trisphosphate receptor type 1 and glutamate receptor subunit 2 are regulated by striatal NFATc4 activity. Consistent with these in-vitro data, repeated exposure to cocaine triggers striatal NFATc4 nuclear translocation and the up-regulation of inositol-1,4,5-trisphosphate receptor type 1 and glutamate receptor subunit 2 gene expression in vivo, suggesting that cocaine-induced increases in gene expression may be partially mediated through activation of NFAT-dependent transcription. Collectively, these findings reveal a novel molecular pathway that may contribute to the enduring modifications in striatal functioning that occur following the administration of drugs of abuse.


Assuntos
Corpo Estriado/metabolismo , Expressão Gênica/fisiologia , Fatores de Transcrição NFATC/metabolismo , Receptores de Dopamina D1/fisiologia , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Receptores de AMPA/metabolismo , Transfecção/métodos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
4.
Mol Cell Endocrinol ; 290(1-2): 8-13, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18502030

RESUMO

Best described outside the nervous system, caveolins are structural proteins that form caveolae, functional microdomains at the plasma membrane that cluster related signaling molecules. Caveolin-associated proteins include G protein-coupled receptors and G proteins, receptor tyrosine kinases, as well as protein kinases, ion channels and various other signaling enzymes. Not surprisingly, a wide array of biological disorders are thought to be rooted in caveolin dysfunction. In addition, caveolins traffic and cluster estrogen receptors to caveolae. Interactions between the estrogen receptors ERalpha and ERbeta with caveolins appear critical in many non-neuronal cell types, e.g., disruption of normal function may underlie many forms of breast cancer. Recent findings suggest caveolins may also play an essential role in membrane estrogen receptor function in the nervous system. Not only are they expressed in neurons and glia, but different caveolin isoforms also appear necessary to generate distinct functional signaling complexes. With membrane estrogen receptors responsible for the efficient activation of a multitude of intracellular signaling pathways, which in turn influence a wide variety of nervous system functions, caveolin proteins are poised to act as the central coordinators of these processes.


Assuntos
Encéfalo/metabolismo , Caveolinas/metabolismo , Estrogênios/metabolismo , Transdução de Sinais , Animais , Humanos , Transporte Proteico , Receptores de Estrogênio/metabolismo
5.
Endocrinology ; 154(11): 4293-304, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24008343

RESUMO

In addition to activating nuclear estrogen receptor signaling, 17ß-estradiol can also regulate neuronal function via surface membrane receptors. In various brain regions, these actions are mediated by the direct association of estrogen receptors (ERs) activating metabotropic glutamate receptors (mGluRs). These ER/mGluR signaling partners are organized into discrete functional microdomains via caveolin proteins. A central question that remains concerns the underlying mechanism by which these subpopulations of ERs are targeted to the surface membrane. One candidate mechanism is S-palmitoylation, a posttranscriptional modification that affects the subcellular distribution and function of the modified protein, including promoting localization to membranes. Here we test for the role of palmitoylation and the necessity of specific palmitoylacyltransferase proteins in neuronal membrane ER action. In hippocampal neurons, pharmacological inhibition of palmitoylation eliminated 17ß-estradiol-mediated phosphorylation of cAMP response element-binding protein, a process dependent on surface membrane ERs. In addition, mutation of the palmitoylation site on estrogen receptor (ER) α blocks ERα-mediated cAMP response element-binding protein phosphorylation. Similar results were obtained after mutation of the palmitoylation site on ERß. Importantly, mutation of either ERα or ERß did not affect the ability of the reciprocal ER to signal at the membrane. In contrast, membrane ERα and ERß signaling were both dependent on the expression of the palmitoylacyltransferase proteins DHHC-7 and DHHC-21. Neither mGluR activity nor caveolin or ER expression was affected by knockdown of DHHC-7 and DHHC-21. These data collectively suggest discrete mechanisms that regulate specific isoform or global membrane ER signaling in neurons separate from mGluR activity or nuclear ER function.


Assuntos
Membrana Celular/fisiologia , Lipoilação , Neurônios/fisiologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/fisiologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Retículo Endoplasmático , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Mutação , Neurônios/citologia , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
6.
J Steroid Biochem Mol Biol ; 131(1-2): 30-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22101209

RESUMO

Progesterone is being utilized as a therapeutic means to ameliorate neuron loss and cognitive dysfunction following traumatic brain injury. Although there have been numerous attempts to determine the means by which progesterone exerts neuroprotective effects, studies describing the underlying molecular mechanisms are lacking. What has become clear, however, is the notion that progesterone can thwart several physiological processes that are detrimental to neuron function and survival, including inflammation, edema, demyelination and excitotoxicity. One clue regarding the means by which progesterone has restorative value comes from the notion that these aforementioned biological processes all share the common theme of eliciting pronounced increases in intracellular calcium. Thus, we propose the hypothesis that progesterone regulation of calcium signaling underlies its ability to mitigate these cellular insults, ultimately leading to neuroprotection. Further, we describe recent findings that indicate neuroprotection is achieved via progesterone block of voltage-gated calcium channels, although additional outcomes may arise from blockade of various other ion channels and neurotransmitter receptors. This article is part of a Special Issue entitled 'Neurosteroids'.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Progesterona/uso terapêutico , Animais , Lesões Encefálicas/tratamento farmacológico , Canais de Cálcio/efeitos dos fármacos , Humanos , Bainha de Mielina/efeitos dos fármacos , Progesterona/fisiologia , Receptores de Glutamato/efeitos dos fármacos
7.
Steroids ; 76(9): 845-55, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21371490

RESUMO

The therapeutic use of progesterone following traumatic brain injury has recently entered phase III clinical trials as a means of neuroprotection. Although it has been hypothesized that progesterone protects against calcium overload following excitotoxic shock, the exact mechanisms underlying the beneficial effects of progesterone have yet to be determined. We found that therapeutic concentrations of progesterone to be neuroprotective against depolarization-induced excitotoxicity in cultured striatal neurons. Through use of calcium imaging, electrophysiology and the measurement of changes in activity-dependent gene expression, progesterone was found to block calcium entry through voltage-gated calcium channels, leading to alterations in the signaling of the activity-dependent transcription factors NFAT and CREB. The effects of progesterone were highly specific to this steroid hormone, although they did not appear to be receptor mediated. In addition, progesterone did not inhibit AMPA or NMDA receptor signaling. This analysis regarding the effect of progesterone on calcium signaling provides both a putative mechanism by which progesterone acts as a neuroprotectant, as well as affords a greater appreciation for its potential far-reaching effects on cellular function.


Assuntos
Encéfalo/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Progesterona/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Apoptose , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Expressão Gênica , Genes Reporter , Ácido Glutâmico/farmacologia , Luciferases/biossíntese , Luciferases/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , N-Metilaspartato/farmacologia , Fatores de Transcrição NFATC/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Fármacos Neuroprotetores/uso terapêutico , Nifedipino/farmacologia , Potássio/farmacologia , Progesterona/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
8.
PLoS One ; 6(3): e18114, 2011 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-21448293

RESUMO

The peptide corticotropin-releasing factor (CRF) was initially identified as a critical component of the stress response. CRF exerts its cellular effects by binding to one of two cognate G-protein coupled receptors (GPCRs), CRF receptor 1 (CRFR1) or 2 (CRFR2). While these GPCRs were originally characterized as being coupled to Gα(s), leading to downstream activation of adenylyl cyclase (AC) and subsequent increases in cAMP, it has since become clear that CRFRs couple to and activate numerous other downstream signaling cascades. In addition, CRF signaling influences the activity of many diverse brain regions, affecting a variety of behaviors. One of these regions is the striatum, including the nucleus accumbens (NAc). CRF exerts profound effects on striatal-dependent behaviors such as drug addiction, pair-bonding, and natural reward. Recent data indicate that at least some of these behaviors regulated by CRF are mediated through CRF activation of the transcription factor CREB. Thus, we aimed to elucidate the signaling pathway by which CRF activates CREB in striatal neurons. Here we describe a novel neuronal signaling pathway whereby CRF leads to a rapid Gßγ- and MEK-dependent increase in CREB phosphorylation. These data are the first descriptions of CRF leading to activation of a Gßγ-dependent signaling pathway in neurons, as well as the first description of Gßγ activation leading to downstream CREB phosphorylation in any cellular system. Additionally, these data provide additional insight into the mechanisms by which CRF can regulate neuronal function.


Assuntos
Hormônio Liberador da Corticotropina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Neostriado/citologia , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosforilação/efeitos dos fármacos , Ratos , Receptores de Hormônio Liberador da Corticotropina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA