Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Biol Cell ; 114(12): 349-364, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36101924

RESUMO

BACKGROUND INFORMATION: Cilia and flagella are dynamic organelles whose assembly and maintenance depend on an activetrafficking process known as the IntraFlagellar Transport (IFT), during which trains of IFT protein particles are moved by specific motors and carry flagellar precursors and turnover products along the axoneme. IFT consists of an anterograde (from base to tip) and a retrograde (from tip to base) phase. During IFT turnaround at the flagellar tip, anterograde trains release their cargoes and remodel to form the retrograde trains. Thus, turnaround is crucial for correct IFT. However, current knowledge of its mechanisms is limited. RESULTS: We show here that in Chlamydomonas flagella the distal ∼200 nm central pair (CP) segment is structurally differentiated for the presence of a ladder-like structure (LLS). During IFT turnaround, the IFT172 subunit dissociates from the IFT- B protein complex and binds to the LLS-containing CP segment, while the IFT-B complex participates in the assembly of the CP capping structures. The IFT scaffolding function played by the LLS-containing CP segment relies on anchoring components other than the CP microtubules, since IFT turnaround occurs also in the CP-devoid pf18 mutant flagella. CONCLUSIONS: During IFT turnaround in Chlamydomonas flagella, i) the LLS and the CP terminal plates act as anchoring platforms for IFT172 and the IFT-B complex, respectively, and ii) during its remodeling, the IFT-B complex contributes to the assembly of the CP capping structures. SIGNIFICANCE: Our results indicate that in full length Chlamydomonas flagella IFT remodeling occurs by a specialized mechanism that involves flagellar tip structures and is distinct from the previously proposed model in which the capability to reverse motility would be intrinsic of IFT train and independent by any other flagellar structure.


Assuntos
Chlamydomonas , Chlamydomonas/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Transporte Biológico
2.
Arch Biochem Biophys ; 717: 109137, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35090868

RESUMO

Alkaptonuria (AKU) is an ultra-rare genetic disease caused by a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD) leading to the accumulation of homogentisic acid (HGA) on connective tissues. Even though AKU is a multi-systemic disease, osteoarticular cartilage is the most affected system and the most damaged tissue by the disease. In chondrocytes, HGA causes oxidative stress dysfunctions, which induce a series of not fully characterized cellular responses. In this study, we used a human chondrocytic cell line as an AKU model to evaluate, for the first time, the effect of HGA on autophagy, the main homeostasis system in articular cartilage. Cells responded timely to HGA treatment with an increase in autophagy as a mechanism of protection. In a chronic state, HGA-induced oxidative stress decreased autophagy, and chondrocytes, unable to restore balance, activated the chondroptosis pathway. This decrease in autophagy also correlated with the accumulation of ochronotic pigment, a hallmark of AKU. Our data suggest new perspectives for understanding AKU and a mechanistic model that rationalizes the damaging role of HGA.


Assuntos
Alcaptonúria/prevenção & controle , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Ácido Homogentísico/metabolismo , Alcaptonúria/metabolismo , Apoptose/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Linhagem Celular , Condrócitos/citologia , Ácido Homogentísico/farmacologia , Humanos , Ocronose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais
3.
FASEB J ; 34(1): 192-207, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914681

RESUMO

The peptide sequence KKIRVRLSA was synthesized in a dimeric structure (SET-M33DIM) and evaluated as a candidate drug for infections due to multidrug-resistant (MDR) Gram-negative pathogens. SET-M33DIM showed significant antibacterial activity against MDR strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli (Minimal Inhibitory Concentration [MICs], 1.5-11 µM), and less activity against Pseudomonas aeruginosa (MICs, 11-22 µM). It showed very low toxicity in vitro, ex vivo, and in vivo; in cytotoxicity tests, its EC50 was as much as 22 times better than that of SET-M33, a peptide with the same amino-acid sequence, but synthesized in tetra-branched form (638 vs 28 µM). In in vivo and ex vivo experiments, SET-M33DIM cleared P. aeruginosa infection, significantly reducing signs of sepsis in animals, and restoring cell viability in lung tissue after bacterial challenge. It also quelled inflammation triggered by LPS and live bacterial cells, inhibiting expression of inflammatory mediators in lung tissue, cultured macrophages, and bronchial cells from a cystic fibrosis patient.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/síntese química , Farmacorresistência Bacteriana Múltipla , Feminino , Hospedeiro Imunocomprometido , Lipopolissacarídeos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Células RAW 264.7 , Testes de Toxicidade
4.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071777

RESUMO

In the longtime challenge of identifying specific, easily detectable and reliable biomarkers of IPF, BALF proteomics is providing interesting new insights into its pathogenesis. To the best of our knowledge, the present study is the first shotgun proteomic investigation of EVs isolated from BALF of IPF patients. Our main aim was to characterize the proteome of the vesicular component of BALF and to explore its individual impact on the pathogenesis of IPF. To this purpose, ultracentrifugation was chosen as the EVs isolation technique, and their purification was assessed by TEM, 2DE and LC-MS/MS. Our 2DE data and scatter plots showed considerable differences between the proteome of EVs and that of whole BALF and of its fluid component. Analysis of protein content and protein functions evidenced that EV proteins are predominantly involved in cytoskeleton remodeling, adenosine signaling, adrenergic signaling, C-peptide signaling and lipid metabolism. Our findings may suggest a wider system involvement in the disease pathogenesis and support the importance of pre-fractioning of complex samples, such as BALF, in order to let low-abundant proteins-mediated pathways emerge.


Assuntos
Biomarcadores , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares/metabolismo , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/metabolismo , Proteoma , Proteômica , Idoso , Cromatografia Líquida , Suscetibilidade a Doenças , Eletroforese em Gel Bidimensional , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem
5.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825683

RESUMO

In this paper, NO2 sensing by means of single-wall carbon nanotubes (SWCNT) networks, decorated with nanoparticles of TiO2 and Au, is proposed. In particular, it is shown that the performance of these materials can be enhanced using pulsed temperature mode. This sensing strategy effectiveness is theoretically and experimentally assessed. In this paper, in fact, a dynamic model for conductive gas sensors formed by networks of nanowires, considering the junctions between different wires as the main contribution to sensor conductance, and in the presence of the target gas, is presented and validated. The model accounts for variable temperature and gas concentration and sheds some light on the mechanisms leading to the sensor response improvement related to temperature pulsed working mode. It is also shown how the addition of a different material can be modeled through different surface adsorption kinetics.

6.
J Cell Physiol ; 234(5): 6696-6708, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341892

RESUMO

Alkaptonuria (AKU) is a disease caused by a deficient homogentisate 1,2-dioxygenase activity leading to systemic accumulation of homogentisic acid (HGA), that forms a melanin-like polymer that progressively deposits onto connective tissues causing a pigmentation called "ochronosis" and tissue degeneration. The effects of AKU and ochronotic pigment on the biomechanical properties of articular cartilage need further investigation. To this aim, AKU cartilage was studied using thermal (thermogravimetry and differential scanning calorimetry) and rheological analysis. We found that AKU cartilage had a doubled mesopore radius compared to healthy cartilage. Since the mesoporous structure is the main responsible for maintaining a correct hydrostatic pressure and tissue homoeostasis, drastic changes of thermal and rheological parameters were found in AKU. In particular, AKU tissue lost its capability to enhance chondrocytes metabolism (decreased heat capacity) and hence the production of proteoglycans. A drastic increase in stiffness and decrease in dissipative and lubricant role ensued in AKU cartilage. Multiphoton and scanning electron microscopies revealed destruction of cell-matrix microstructure and disruption of the superficial layer. Such observations on AKU specimens were confirmed in HGA-treated healthy cartilage, indicating that HGA is the toxic responsible of morphological and mechanical alterations of cartilage in AKU.


Assuntos
Alcaptonúria/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Ácido Homogentísico/farmacologia , Ocronose/tratamento farmacológico , Alcaptonúria/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Pigmentação/efeitos dos fármacos
7.
J Cell Sci ; 129(10): 2064-74, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044756

RESUMO

Intraflagellar transport (IFT) is responsible for the bidirectional trafficking of molecular components required for the elongation and maintenance of eukaryotic cilia and flagella. Cargo is transported by IFT 'trains', linear rows of multiprotein particles moved by molecular motors along the axonemal doublets. We have previously described two structurally distinct categories of 'long' and 'short' trains. Here, we analyse the relative number of these trains throughout flagellar regeneration and show that long trains are most abundant at the beginning of flagellar growth whereas short trains gradually increase in number as flagella elongate. These observations are incompatible with the previous hypothesis that short trains are derived solely from the reorganization of long trains at the flagellar tip. We demonstrate with electron tomography the existence of two distinct ultrastructural organizations for the short trains, we name these 'narrow' and 'wide', and provide the first 3D model of the narrow short trains. These trains are characterized by tri-lobed units, which repeat longitudinally every 16 nm and contact protofilament 7 of the B-tubule. Functional implications of the new structural evidence are discussed.


Assuntos
Chlamydomonas/crescimento & desenvolvimento , Flagelos/ultraestrutura , Regeneração/genética , Axonema/metabolismo , Axonema/ultraestrutura , Transporte Biológico , Chlamydomonas/genética , Chlamydomonas/ultraestrutura , Cílios/genética , Cílios/ultraestrutura , Tomografia com Microscopia Eletrônica , Flagelos/genética , Transporte Proteico
8.
J Nanobiotechnology ; 16(1): 21, 2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29501065

RESUMO

BACKGROUND: Near-infrared quantum dots (NIR QDs) are a new class of fluorescent labels with excellent bioimaging features, such as high fluorescence intensity, good fluorescence stability, sufficient electron density, and strong tissue-penetrating ability. For all such features, NIR QDs have great potential for early cancer diagnosis, in vivo tumor imaging and high resolution electron microscopy studies on cancer cells. RESULTS: In the present study we constructed NIR QDs functionalized with the NT4 cancer-selective tetrabranched peptides (NT4-QDs). We observed specific uptake of NT4-QDs in human cancer cells in in vitro experiments and a much higher selective accumulation and retention of targeted QDs at the tumor site, compared to not targeted QDs, in a colon cancer mouse model. CONCLUSIONS: NIR QDs labelled with the tetrabranched NT4 peptide have very promising performance for selective addressing of tumor cells in vitro and in vivo, proving rising features of NT4-QDs as theranostics.


Assuntos
Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Peptídeos/química , Pontos Quânticos/química , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Raios Infravermelhos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Peptídeos/metabolismo , Pontos Quânticos/metabolismo , Pontos Quânticos/ultraestrutura
9.
J Cell Physiol ; 232(7): 1728-1738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27454006

RESUMO

Alkaptonuria (AKU) is an ultra-rare autosomal genetic disorder caused by a defect in the activity of the enzyme homogentisate 1,2-dioxygenase (HGD) that leads to the accumulation of homogentisic acid (HGA) and its oxidized product, benzoquinone acetic acid (BQA), in the connective tissues causing a pigmentation called "ochronosis." The consequent progressive formation of ochronotic aggregates generate a severe condition of oxidative stress and inflammation in all the affected areas. Experimental evidences have also proved the presence of serum amyloid A (SAA) in several AKU tissues and it allowed classifying AKU as a secondary amyloidosis. Although AKU is a multisystemic disease, the most affected system is the osteoarticular one and articular cartilage is the most damaged tissue. In this work, we have analyzed for the first time the cytoskeleton of AKU chondrocytes by means of immunofluorescence staining. We have shown the presence of SAA within AKU chondrocytes and finally we have demonstrated the co-localization of SAA with three cytoskeletal proteins: actin, vimentin, and ß-tubulin. Furthermore, in order to observe the ultrastructural features of AKU chondrocytes we have performed TEM analysis, focusing on the Golgi apparatus structure and, to demonstrate that pigmented areas in AKU cartilage are correspondent to areas of oxidation, 4-HNE presence has been evaluated by means of immunofluorescence. J. Cell. Physiol. 232: 1728-1738, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Alcaptonúria/patologia , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Adulto , Idoso , Aldeídos/metabolismo , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Condrócitos/ultraestrutura , Citoesqueleto/ultraestrutura , Feminino , Imunofluorescência , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Pigmentos Biológicos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
10.
Biochim Biophys Acta Biomembr ; 1859(10): 1796-1804, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28583831

RESUMO

SET-M33 is a multimeric antimicrobial peptide active against Gram-negative bacteria in vitro and in vivo. Insights into its killing mechanism could elucidate correlations with selectivity. SET-M33 showed concentration-dependent bactericidal activity against colistin-susceptible and resistant isolates of P. aeruginosa and K. pneumoniae. Scanning and transmission microscopy studies showed that SET-M33 generated cell blisters, blebs, membrane stacks and deep craters in K. pneumoniae and P. aeruginosa cells. NMR analysis and CD spectra in the presence of sodium dodecyl sulfate micelles showed a transition from an unstructured state to a stable α-helix, driving the peptide to arrange itself on the surface of micelles. SET-M33 kills Gram-negative bacteria after an initial interaction with bacterial LPS. The molecule becomes then embedded in the outer membrane surface, thereby impairing cell function. This activity of SET-M33, in contrast to other similar antimicrobial peptides such as colistin, does not generate resistant mutants after 24h of exposure, non-specific interactions or toxicity against eukaryotic cell membranes, suggesting that SET-M33 is a promising new option for the treatment of Gram-negative antibiotic-resistant infections.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Anti-Infecciosos/química , Lipopolissacarídeos/metabolismo , Micelas , Testes de Sensibilidade Microbiana/métodos , Conformação Proteica em alfa-Hélice , Dodecilsulfato de Sódio/química
11.
Calcif Tissue Int ; 101(1): 50-64, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28271171

RESUMO

Alkaptonuria (AKU) is a hereditary disorder that results from altered structure and function of homogentisate 1,2 dioxygenase (HGD). This enzyme, predominantly produced by liver and kidney, is responsible for the breakdown of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway. A deficient HGD activity causes HGA levels to rise systemically. The disease is clinically characterized by homogentisic aciduria, bluish-black discoloration of connective tissues (ochronosis) and joint arthropathy. Additional manifestations are cardiovascular abnormalities, renal, urethral and prostate calculi and scleral and ear involvement. While the radiological aspect of ochronotic spondyloarthropathy is known, there are only few data regarding an exhaustive ultrastructural and histologic study of different tissues in AKU. Moreover, an in-depth analysis of tissues from patients of different ages, having varied symptoms, is currently lacking. A complete microscopic and ultrastructural analysis of different AKU tissues, coming from six differently aged patients, is here presented thus significantly contributing to a more comprehensive knowledge of this ultra-rare pathology.


Assuntos
Alcaptonúria/patologia , Adulto , Idoso , Alcaptonúria/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ocronose/etiologia , Ocronose/patologia
12.
Biochim Biophys Acta Gen Subj ; 1861(2): 135-146, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27865997

RESUMO

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism characterized by homogentisic acid (HGA) accumulation due to a deficient activity of the homogentisate 1.2-dioxygenase (HGD) enzyme. This leads to the production of dark pigments that are deposited onto connective tissues, a condition named 'ochronosis' and whose mechanisms are not completely clear. Recently, the potential role of hitherto unidentified proteins in the ochronotic process was hypothesized, and the presence of Serum Amyloid A (SAA) in alkaptonuric tissues was reported, allowing the classification of AKU as a novel secondary amyloidosis. METHODS: Gel electrophoresis, Western Blot, Congo Red-based assays and electron microscopy were used to investigate the effects of HGA on the aggregation and fibrillation propensity of amyloidogenic proteins and peptides [Aß(1-42), transthyretin, atrial natriuretic peptide, α-synuclein and SAA]. LC/MS and in silico analyses were undertaken to identify possible binding sites for HGA (or its oxidative metabolite, a benzoquinone acetate or BQA) in SAA. RESULTS: We found that HGA might act as an amyloid aggregation enhancer in vitro for all the tested proteins and peptides in a time- and dose- dependent fashion, and identified a small crevice at the interface between two HGD subunits as a candidate binding site for HGA/BQA. CONCLUSIONS: HGA might be an important amyloid co- component playing significant roles in AKU amyloidosis. GENERAL SIGNIFICANCE: Our results provide a possible explanation for the clinically verified onset of amyloidotic processes in AKU and might lay the basis to setup proper pharmacological approaches to alkaptonuric ochronosis, which are still lacking.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Ácido Homogentísico/farmacologia , Agregação Patológica de Proteínas/induzido quimicamente , Alcaptonúria/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Fator Natriurético Atrial/metabolismo , Sítios de Ligação/efeitos dos fármacos , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Humanos , Ocronose/metabolismo , Oxirredução/efeitos dos fármacos , Pré-Albumina/metabolismo , Proteína Amiloide A Sérica/metabolismo , alfa-Sinucleína/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1861(4): 860-870, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28095317

RESUMO

BACKGROUND: Liposomes, used to improve the therapeutic index of new and established drugs, have advanced with the insertion of active targeting. The lectin from Lotus tetragonolobus (LTL), which binds glycans containing alpha-1,2-linked fucose, reveals surface regionalized glycoepitopes in highly proliferative cells not detectable in normally growing cells. In contrast, other lectins localize the corresponding glycoepitopes all over the cell surface. LTL also proved able to penetrate the cells by an unconventional uptake mechanism. METHODS: We used confocal laser microscopy to detect and localize LTL-positive glycoepitopes and lectin uptake in two cancer cell lines. We then constructed doxorubicin-loaded liposomes functionalized with LTL. Intracellular delivery of the drug was determined in vitro and in vivo by confocal and electron microscopy. RESULTS: We confirmed the specific localization of Lotus binding sites and the lectin uptake mechanism in the two cell lines and determined that LTL-functionalized liposomes loaded with doxorubicin greatly increased intracellular delivery of the drug, compared to unmodified doxorubicin-loaded liposomes. The LTL-Dox-L mechanism of entry and drug delivery was different to that of Dox-L and other liposomal preparations. LTL-Dox-L entered the cells one by one in tiny tubules that never fused with lysosomes. LTL-Dox-L injected in mice with melanoma specifically delivered loaded Dox to the cytoplasm of tumor cells. CONCLUSIONS: Liposome functionalization with LTL promises to broaden the therapeutic potential of liposomal doxorubicin treatment, decreasing non-specific toxicity. GENERAL SIGNIFICANCE: Doxorubicin-LTL functionalized liposomes promise to be useful in the development of new cancer chemotherapy protocols.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fabaceae/metabolismo , Lectinas/administração & dosagem , Lectinas/química , Lipossomos/administração & dosagem , Lipossomos/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Citoplasma/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Epitopos/administração & dosagem , Epitopos/química , Humanos , Lisossomos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Camundongos
14.
J Cell Physiol ; 230(5): 1148-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25336110

RESUMO

Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU.


Assuntos
Alcaptonúria/patologia , Apoptose , Cartilagem/patologia , Condrócitos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldeídos/metabolismo , Cartilagem/ultraestrutura , Condrócitos/ultraestrutura , Ativação Enzimática , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Articulações/patologia , Masculino , Pessoa de Meia-Idade , Osteoartrite/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Espectrometria por Raios X , Coloração e Rotulagem , Transglutaminases/metabolismo
15.
J Inherit Metab Dis ; 38(5): 797-805, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25868666

RESUMO

Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism developed from the lack of homogentisic acid oxidase activity, causing homogentisic acid (HGA) accumulation that produces an HGA-melanin ochronotic pigment, of hitherto unknown composition. Besides the accumulation of HGA, the potential role and presence of unidentified proteins has been hypothesized as additional causal factors involved in ochronotic pigment deposition. Evidence has been provided on the presence of serum amyloid A (SAA) in several AKU tissues, which allowed classifying AKU as a novel secondary amyloidosis. In this paper, we will briefly review all direct and indirect lines of evidence related to the presence of amyloidosis in AKU. We also report the first data on abnormal SAA serum levels in a cohort of AKU patients.


Assuntos
Alcaptonúria/complicações , Amiloidose/etiologia , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Humanos , Inflamação/complicações , Inflamação/metabolismo , Inflamação/patologia , Ocronose/complicações , Ocronose/metabolismo , Ocronose/patologia , Estresse Oxidativo/fisiologia , Coloração e Rotulagem/métodos
16.
J Inherit Metab Dis ; 38(5): 807-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25762405

RESUMO

Alkaptonuria is an ultra-rare autosomal recessive disease developed from the lack of homogentisate 1,2-dioxygenase (HGD) activity, causing an accumulation in connective tissues of homogentisic acid (HGA) and its oxidized derivatives in polymerized form. The deposition of ochronotic pigment has been so far attributed to homogentisic acid produced by the liver, circulating in the blood, and accumulating locally. In the present paper, we report the expression of HGD in the brain. Mouse and human brain tissues were positively tested for HGD gene expression by western blotting. Furthermore, HGD expression was confirmed in human neuronal cells that also revealed the presence of six HGD molecular species. Moreover, once cultured in HGA excess, human neuronal cells produced ochronotic pigment and amyloid. Our findings indicate that alkaptonuric brain cells produce the ochronotic pigment in loco and this may contribute to induction of neurological complications.


Assuntos
Alcaptonúria/metabolismo , Encéfalo/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Alcaptonúria/patologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Western Blotting , Encéfalo/patologia , Linhagem Celular Tumoral , Ácido Homogentísico/metabolismo , Humanos , Masculino , Camundongos , Ocronose/metabolismo , Ocronose/patologia
17.
Mediators Inflamm ; 2014: 258471, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24876668

RESUMO

BACKGROUND: Alkaptonuria, a rare autosomal recessive metabolic disorder caused by deficiency in homogentisate 1,2-dioxygenase activity, leads to accumulation of oxidised homogentisic acid in cartilage and collagenous structures present in all organs and tissues, especially joints and heart, causing a pigmentation called ochronosis. A secondary amyloidosis is associated with AKU. Here we report a study of an aortic valve from an AKU patient. RESULTS: Congo Red birefringence, Th-T fluorescence, and biochemical assays demonstrated the presence of SAA-amyloid deposits in AKU stenotic aortic valve. Light and electron microscopy assessed the colocalization of ochronotic pigment and SAA-amyloid, the presence of calcified areas in the valve. Immunofluorescence detected lipid peroxidation of the tissue and lymphocyte/macrophage infiltration causing inflammation. High SAA plasma levels and proinflammatory cytokines levels comparable to those from rheumatoid arthritis patients were found in AKU patient. CONCLUSIONS: SAA-amyloidosis was present in the aortic valve from an AKU patient and colocalized with ochronotic pigment as well as with tissue calcification, lipid oxidation, macrophages infiltration, cell death, and tissue degeneration. A local HGD expression in human cardiac tissue has also been ascertained suggesting a consequent local production of ochronotic pigment in AKU heart.


Assuntos
Alcaptonúria/imunologia , Alcaptonúria/metabolismo , Amiloidose/fisiopatologia , Inflamação/fisiopatologia , Estresse Oxidativo , Idoso , Valva Aórtica/metabolismo , Artrite Reumatoide/sangue , Feminino , Humanos , Peroxidação de Lipídeos , Linfócitos/citologia , Macrófagos/citologia , Miocárdio/metabolismo , Ocronose/metabolismo , Proteína Amiloide A Sérica/metabolismo
18.
Arthropod Struct Dev ; 80: 101357, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669939

RESUMO

The ultrastructural study on the female reproductive system of the beetle M. brevicauda (Mordellidae) confirmed the positive correlation between the length of the sperm and the size of the female seminal receptacle (Spermatheca). The spermatheca of the species is characterized by an apical bulb-like structure where the spermathecal duct forms numerous folds filled with sperm. At this level many bacterial cells are present intermingled with the duct folds. Some are organized in large structures, such as bacteriomes, while other are single bacteriocytes. The latter are often found near the basal lamina of duct epithelium. In addition, some bacteria are visible in the cytoplasm of the duct epithelial cells. Interestingly, bacterial cells have never been observed in the duct lumen. The possible function of the bacterial cells is discussed.


Assuntos
Besouros , Microscopia Eletrônica de Transmissão , Animais , Besouros/ultraestrutura , Feminino , Masculino , Genitália Feminina/ultraestrutura , Bactérias/ultraestrutura , Espermatozoides/ultraestrutura , Microscopia Eletrônica de Varredura
19.
Micron ; 181: 103625, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38503061

RESUMO

The sperm ultrastructure of the bean-weevil Spermophagus kuesteri (Bruchinae) was studied to verify the congruence of the new position of the subfamily within Chrysomelidae. The results indicated a positive answer to the question supporting a close relationship between Chrysomelidae and Curculionidae, a finding confirmed also by molecular data. Moreover, the sperm morphology of Divales cinctus, a member of Melyridae (Cleroidea) allowed to confirm the different sperm organization between members of this superfamily and Phytophaga (Chrysomeloidea + Curculionoidea). While studying the spermiogenesis of S. kuesteri, some sperm cysts showed aberrant cells provided with two flagella in the same plasma membrane. These aberrant sperm could be the result, during early spermiogenesis, of irregular processes involving the canal rings between spermatids.

20.
Micron ; 187: 103721, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39306919

RESUMO

The ground beetle Clinidium canaliculatum is a member of Rhysodinae, a taxon with still discussed systematic position. The spermatheca of this species is a small cylindrical structure connected to the common oviduct by a thin duct. The ultrastructure of the organ has revealed that the apical receptacle is provided with an epithelium lined by a thick cuticle from the deeper region of which several finger-like cuticular structures extend into the cytoplasm. On these structures adhere microtubule bundles that cross the whole cytoplasm to anchor on short densities along the basal plasma membrane. These specializations are strongly reminiscent of the hemidesmosomes, possibly playing a mechanical role enabling the cells to resist to the muscle contractions pushing the sperm towards the spermathecal duct. The cells are rich in mitochondria and glycogen granules and they are possibly involved in fluid uptake from the spermathecal lumen. The spermathecal duct has a simple epithelium lined by a soft cuticle. The sperm present in the apical receptacle and in the duct lumen maintain the structure described in the male genital apparatuses. They are generally free and embedded in a homogeneous electron-dense material. Occasionally, a sperm bundle, still with an apical cap, was visible in the spermathecal receptacle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA