RESUMO
The synthesis of 24 hybrid molecules, consisting of naturally occurring sclareol (SCL) and synthetic 1,2,4-triazolo[1,5-a]pyrimidines (TPs), is described. New compounds were designed with the aim of improving the cytotoxic properties, activity, and selectivity of the parent compounds. Six analogs (12a-f) contained 4-benzylpiperazine linkage, while 4-benzyldiamine linkage was present in eighteen derivatives (12g-r and 13a-f). Hybrids 13a-f consist of two TP units. After purification, all hybrids (12a-r and 13a-f), as well as their precursors (9a-e and 11a-c), were tested on human glioblastoma U87 cells. More than half of the tested synthesized molecules, 16 out of 31, caused a significant reduction of U87 cell viability (more than 75% reduction) at 30 µM. The concentration-dependent cytotoxicity of these 16 compounds was also examined on U87 cells, corresponding multidrug-resistant (MDR) U87-TxR cells with increased P-glycoprotein (P-gp) expression and activity, and normal lung fibroblasts MRC-5. Importantly, 12l and 12r were active in the nanomolar range, while seven compounds (11b, 11c, 12i, 12l, 12n, 12q, and 12r) were more selective towards glioblastoma cells than SCL. All compounds except 12r evaded MDR, showing even better cytotoxicity in U87-TxR cells. In particular, 11c, 12a, 12g, 12j, 12k, 12m, 12n, and SCL showed collateral sensitivity. Hybrid compounds 12l, 12q, and 12r decreased P-gp activity to the same extent as a well-known P-gp inhibitor - tariquidar (TQ). Hybrid compound 12l and its precursor 11c affected different cellular processes including the cell cycle, cell death, and mitochondrial membrane potential, and changed the levels of reactive oxygen and nitrogen species (ROS/RNS) in glioblastoma cells. Collateral sensitivity towards MDR glioblastoma cells was caused by the modulation of oxidative stress accompanied by inhibition of mitochondria.
Assuntos
Antineoplásicos , Glioblastoma , Humanos , Linhagem Celular Tumoral , Sensibilidade Colateral a Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Pirimidinas/farmacologia , Pirimidinas/uso terapêuticoRESUMO
The impact of tyrosine kinase inhibitors (TKIs) on multidrug resistance (MDR) in non-small cell lung carcinoma (NSCLC) is a critical aspect of cancer therapy. While TKIs effectively target specific signaling pathways of cancer cells, they can also act as substrates for ABC transporters, potentially triggering MDR. The aim of our study was to evaluate the response of 17 patient-derived NSCLC cultures to 10 commonly prescribed TKIs and to correlate these responses with patient mutational profiles. Using an ex vivo immunofluorescence assay, we analyzed the expression of the MDR markers ABCB1, ABCC1, and ABCG2, and correlated these data with the genetic profiles of patients for a functional diagnostic approach. NSCLC cultures responded differently to TKIs, with erlotinib showing good efficacy regardless of mutation burden or EGFR status. However, the modulation of MDR mechanisms by erlotinib, such as increased ABCG2 expression, highlights the challenges associated with erlotinib treatment. Other TKIs showed limited efficacy, highlighting the variability of response in NSCLC. Genetic alterations in signaling pathways associated with drug resistance and sensitivity, including TP53 mutations, likely contributed to the variable responses to TKIs. The relationships between ABC transporter expression, gene alterations, and response to TKIs did not show consistent patterns. Our results suggest that in addition to mutational status, performing functional sensitivity screening is critical for identifying appropriate treatment strategies with TKIs. These results underscore the importance of considering drug sensitivity, off-target effects, MDR risks, and patient-specific genetic profiles when optimizing NSCLC treatment and highlight the potential for personalized approaches, especially in early stages.
RESUMO
Euphorbia seguieriana ssp. seguieriana Necker (ES) and Euphorbia cyparissias (EC) with a habitat in the Deliblato Sands were the subject of this examination. The latexes of these so far insufficiently investigated species of the Euphorbia genus are used in traditional medicine for the treatment of wounds and warts on the skin. To determine their chemical composition, non-targeted screening of the latexes' chloroform extracts was performed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry employing an electrospray ionization source (LC-ESI QTOF MS). The analysis of the obtained results showed that the latexes of ES and EC represent rich sources of diterpenes, tentatively identified as jatrophanes, ingenanes, tiglianes, myrsinanes, premyrsinanes, and others. Examination of the anticancer activity of the ES and EC latex extracts showed that both extracts significantly inhibited the growth of the non-small cell lung carcinoma NCI-H460 and glioblastoma U87 cell lines as well as of their corresponding multi-drug resistant (MDR) cell lines, NCI-H460/R and U87-TxR. The obtained results also revealed that the ES and EC extracts inhibited the function of P-glycoprotein (P-gp) in MDR cancer cells, whose overexpression is one of the main mechanisms underlying MDR.
RESUMO
Lung cancer remains the leading cause of cancer death globally, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Multidrug resistance (MDR), often caused by ATP-binding cassette (ABC) transporters, represents a significant obstacle in the treatment of NSCLC. While genetic profiling has an important role in personalized therapy, functional assays that measure cellular responses to drugs are gaining in importance. We developed an automated microplate-based immunofluorescence assay for the evaluation of MDR markers ABCB1, ABCC1, and ABCG2 in cells obtained from NSCLC patients through high-content imaging and image analysis, as part of a functional diagnostic approach. This assay effectively discriminated cancer from non-cancer cells within mixed cultures, which is vital for accurate assessment of changes in MDR marker expression in different cell populations in response to anticancer drugs. Validation was performed using established drug-sensitive (NCI-H460) and drug-resistant (NCI-H460/R) NSCLC cell lines, demonstrating the assay's capacity to distinguish and evaluate different MDR profiles. The obtained results revealed wide-ranging effects of various chemotherapeutic agents on MDR marker expression in different patient-derived NSCLC cultures, emphasizing the need for MDR diagnostics in NSCLC. In addition to being a valuable tool for assessing drug effects on MDR markers in different cell populations, the assay can complement genetic profiling to optimize treatment. Further assay adaptations may extend its application to other cancer types, improving treatment efficacy while minimizing the development of resistance.
RESUMO
Drug resistance presents a major obstacle to the successful treatment of glioblastoma. Autophagy plays a key role in drug resistance, particularly in relation to targeted therapy, which has prompted the use of autophagy inhibitors to increase the effectiveness of targeted therapeutics. The ability of two Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306, to induce autophagy was evaluated in the human glioblastoma cell line U87 and its multidrug-resistant counterpart U87-TxR. Autophagy markers were assessed by flow cytometry, microscopy, and Western blot, and induction of autophagy by these compounds was demonstrated after 3 h as well as 48 h. The effects of Si306 and pro-Si306 on cell proliferation and cell death were examined in the presence or absence of autophagy inhibition by bafilomycin A1. Combined treatments of Si306 and pro-Si306 with bafilomycin A1 were synergistic in nature, and the inhibition of autophagy sensitized glioblastoma cells to Src tyrosine kinase inhibitors. Si306 and pro-Si306 more strongly inhibited cell proliferation and triggered necrosis in combination with bafilomycin A1. Our findings suggest that modulation of Si306- and pro-Si306-induced autophagy can be used to enhance the anticancer effects of these Src tyrosine kinase inhibitors and overcome the drug-resistant phenotype in glioblastoma cells.