Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 22(6): 1167-79, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23250913

RESUMO

Autophagy is dysfunctional in many degenerative diseases including myopathies. Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM) associated with Paget's disease of the bone, fronto-temporal dementia and amyotrophic lateral sclerosis (IBMPFD/ALS). VCP is necessary for protein degradation via the proteasome and lysosome. IBMPFD/ALS mutations in VCP disrupt autophagosome and endosome maturation resulting in vacuolation, weakness and muscle atrophy. To understand the regulation of autophagy in VCP-IBM muscle, we examined the AKT/FOXO3 and mammalian target of rapamycin (mTOR) pathways. Basal Akt and FOXO3 phosphorylation was normal. In contrast, the phosphorylation of mTOR targets was decreased. Consistent with this, global protein translation was diminished and autophagosome biogenesis was increased in VCP-IBM muscle. Further mTORC1 inhibition with rapamycin hastened weakness, atrophy and vacuolation in VCP-IBM mice. This was accompanied by the accumulation of autophagic substrates such as p62, LC3II and ubiquitinated proteins. The decrease in mTOR signaling was partially rescued by insulin and to a lesser extent by amino acid (AA) stimulation in VCP-IBM muscle. Cells expressing catalytically inactive VCP or treated with a VCP inhibitor also failed to activate mTOR upon nutrient stimulation. Expression of a constitutively active Rheb enhanced mTOR activity and increased the fiber size in VCP-IBM mouse skeletal muscle. These studies suggest that VCP mutations may disrupt mTOR signaling and contribute to IBMPFD/ALS disease pathogenesis. Treatment of some autophagic disorders with mTOR inhibitors such as rapamycin may worsen disease.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Vacúolos/metabolismo , Adenosina Trifosfatases/genética , Animais , Autofagia , Proteínas de Ciclo Celular/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/patologia , Miosite de Corpos de Inclusão/fisiopatologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Vacúolos/patologia , Proteína com Valosina
2.
Nat Cell Biol ; 13(9): 1116-23, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21822278

RESUMO

The AAA-ATPase VCP (also known as p97) cooperates with distinct cofactors to process ubiquitylated proteins in different cellular pathways. VCP missense mutations cause a systemic degenerative disease in humans, but the molecular pathogenesis is unclear. We used an unbiased mass spectrometry approach and identified a VCP complex with the UBXD1 cofactor, which binds to the plasma membrane protein caveolin-1 (CAV1) and whose formation is specifically disrupted by disease-associated mutations. We show that VCP-UBXD1 targets mono-ubiquitylated CAV1 in SDS-resistant high-molecular-weight complexes on endosomes, which are en route to degradation in endolysosomes. Expression of VCP mutant proteins, chemical inhibition of VCP, or siRNA-mediated depletion of UBXD1 leads to a block of CAV1 transport at the limiting membrane of enlarged endosomes in cultured cells. In patient muscle, muscle-specific caveolin-3 accumulates in sarcoplasmic pools and specifically delocalizes from the sarcolemma. These results extend the cellular functions of VCP to mediating sorting of ubiquitylated cargo in the endocytic pathway and indicate that impaired trafficking of caveolin may contribute to pathogenesis in individuals with VCP mutations.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Caveolina 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mutação , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases/genética , Animais , Proteínas Relacionadas à Autofagia , Western Blotting , Proteínas de Transporte/genética , Caveolina 1/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Espectrometria de Massas , Microscopia Eletrônica , Microscopia de Fluorescência , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Ligação Proteica , Interferência de RNA , Ratos , Sarcolema/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA