Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37514461

RESUMO

Mixed polyolefin-based waste needs urgent attention to mitigate its negative impact on the environment. The separation of these plastics requires energy-intensive processes due to their similar densities. Additionally, these materials cannot be blended without compatibilizers, as they are inherently incompatible and immiscible. Herein, non-wettable microporous sheets from recycled polyethylene (PE) and polypropylene (PP) are presented. The methodology involves the application of phase separation and spin-casting techniques to obtain a bimodal porous structure, facilitating efficient oil-water separation. The resulting sheets have an immediate and equilibrium sorption uptake of 100 and 55 g/g, respectively, due to the presence of micro- and macro-pores, as revealed by SEM. Moreover, sheets possess enhanced crystallinity, as evidenced by XRD; hence, they retain their structure during sorption and desorption and are reusable with 98% efficiency. The anti-wetting properties of the sheets are enhanced by applying a silane coating, ensuring waterless sorption and a contact angle of 140°. These results highlight the importance of implementing sustainable solutions to recycle plastics and mitigate the oil spill problem.

2.
Polymers (Basel) ; 12(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403372

RESUMO

The effect of accelerated weathering on poly(lactic acid) (PLA) and a PLA nanocomposite with rutile titanium (IV) dioxide (rutile-TiO2) was investigated. The accelerated weathering test applied consecutive steps of ultraviolet (UV) (at 340 nm and 0.76 W m-2 irradiance) and moisture at 50 °C for 2000 h, following the ASTM D4329 standard. The morphology, chemical structure, molecular weight, crystallization, as well as mechanical and thermal properties were thoroughly studied. Samples were characterized after 500 h, 1000 h and 2000 h exposure. Different degradation mechanisms were proposed to happen during the weathering exposure and confirmed based on the experimental data. The PLA and PLA/TiO2 surfaces presented holes and increasing roughness over the exposure time. The molecular weight of the weathered samples decreased due to chain scission during the degradation processes. Thermal stability decreased in the presence of TiO2 and a double melting peak was observed for the PLA/TiO2 nanocomposite. A general improvement in the mechanical properties of the PLA/TiO2 nanocomposite was observed over time during the accelerated weathering analysis up to 1000 h of exposure time. After 2000 h of weathering exposure, the PLA and PLA/TiO2 became extremely brittle and lost their ductile properties. This was ascribed to a significant increase in the degree of crystallinity upon weathering, which was accelerated in the presence of TiO2. Atomic force microscopy (AFM) using amplitude modulation-frequency modulation (AM-FM) tool confirmed the mechanical changes in the surface area of the PLA samples after accelerated weathering exposure. The stiffness and Young's modulus achieved higher values than the unweathered ones up to 1000 h of exposure time. The changes in the physical and chemical properties of PLA/TiO2 over the ageing time confirm the photocatalytic activity of rutile-TiO2.

3.
Polymers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764247

RESUMO

The effect of accelerated weathering on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV-based nanocomposites with rutile titanium (IV) dioxide (PHBV/TiO2) was investigated. The accelerated weathering test applied consecutive steps of UV irradiation (at 340 nm and 0.76 W m-2 irradiance) and moisture at 50 °C following the ASTM D4329 standard for up to 2000 h of exposure time. The morphology, chemical structure, crystallization, as well as the mechanical and thermal properties were studied. Samples were characterized after 500, 1000, and 2000 h of exposure time. Different degradation mechanisms were proposed to occur during the weathering exposure and were confirmed based on the experimental data. The PHBV surface revealed cracks and increasing roughness with the increasing exposure time, whereas the PHBV/TiO2 nanocomposites showed surface changes only after 2000 h of accelerated weathering. The degradation of neat PHBV under moisture and UV exposure occurred preferentially in the amorphous phase. In contrast, the presence of TiO2 in the nanocomposites retarded this process, but the degradation would occur simultaneously in both the amorphous and crystalline segments of the polymer after long exposure times. The thermal stability, as well as the temperature and rate of crystallization, decreased in the absence of TiO2. TiO2 not only provided UV protection, but also restricted the physical mobility of the polymer chains, acting as a nucleating agent during the crystallization process. It also slowed down the decrease in mechanical properties. The mechanical properties were shown to gradually decrease for the PHBV/TiO2 nanocomposites, whereas a sharp drop was observed for the neat PHBV after an accelerated weathering exposure. Atomic force microscopy (AFM), using the amplitude modulation-frequency modulation (AM-FM) tool, also confirmed the mechanical changes in the surface area of the PHBV and PHBV/TiO2 samples after accelerated weathering exposure. The changes in the physical and chemical properties of PHBV/TiO2 confirm the barrier activity of TiO2 for weathering attack and its retardation of the degradation process.

4.
Polymers (Basel) ; 11(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960521

RESUMO

Scientists from various different fields use organo-trialkoxysilanes and tetraalkoxysilanes in a number of applications. The silica-based materials are sometimes synthesized without a good understanding of the underlying reaction kinetics. This literature review attempts to be a comprehensive and more technical article in which the kinetics of alkoxysilanes polymerization are discussed. The kinetics of polymerization are controlled by primary factors, such as catalysts, water/silane ratio, pH, and organo-functional groups, while secondary factors, such as temperature, solvent, ionic strength, leaving group, and silane concentration, also have an influence on the reaction rates. Experiments to find correlations between these factors and reaction rates are restricted to certain conditions and most of them disregard the properties of the solvent. In this review, polymerization kinetics are discussed in the first two sections, with the first section covering early stage reactions when the reaction medium is homogenous, and the second section covering when phase separation occurs and the reaction medium becomes heterogeneous. Nuclear magnetic resonance (NMR) spectroscopy and other techniques are discussed in the third section. The last section summarizes the study of reaction mechanisms by using ab initio and Density Functional Theory (DFT) methods alone, and in combination with molecular dynamics (MD) or Monte Carlo (MC) methods.

5.
Sci Rep ; 9(1): 17624, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772267

RESUMO

Alkoxysilanes and organoalkoxysilanes are primary materials in several industries, e.g. coating, anti-corrosion treatment, fabrication of stationary phase for chromatography, and coupling agents. The hydrolytic polycondensation reactions and final product can be controlled by adjusting the hydrolysis reaction, which was investigated under a variety of conditions, such as different alkoxysilanes, solvents, and catalysts by using gas chromatography. The hydrolysis rate of alkoxysilanes shows a dependence on the alkoxysilane structure (especially the organic attachments), solvent properties, and the catalyst dissociation constant and solubility. Some of the alkoxysilanes exhibit intramolecular catalysis. Hydrogen bonding plays an important role in the enhancement of the hydrolysis reaction, as well as the dipole moment of the alkoxysilanes, especially in acetonitrile. There is a relationship between the experimentally calculated polarity by the Taft equation and the reactivity, but it shows different responses depending on the solvent. It was found that negative and positive charges are respectively accumulated in the transition state in alkaline and acidic media. The reaction mechanisms are somewhat different from those previously suggested. Finally, it was found that enthalpy-entropy compensation (EEC) effect and isokinetic relationships (IKR) are exhibited during the hydrolysis of CTES in different solvents and catalysts; therefore, the reaction has a linear free energy relationship (LFER).

6.
Polymers (Basel) ; 11(4)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991672

RESUMO

In this work, the 70/30 and 30/70 w/w polycaprolactone (PCL)/polybutylene succinate (PBS) blends and their corresponding PCL/PBS/(polycarbonate (PC)/multiwalled carbon nanotubes (MWCNTs) masterbatch) nanocomposites were prepared in a twin-screw extruder. The nanocomposites contained 1.0 and 4.0 wt% MWCNTs. The blends showed a sea-island morphology typical of immiscible blends. For the nanocomposites, three phases were formed: (i) The matrix (either PCL- or PBS-rich phase depending on the composition), (ii) dispersed polymer droplets of small size (either PCL- or PBS-rich phase depending on the composition), and (iii) dispersed aggregates of tens of micron sizes identified as PC/MWCNTs masterbatch. Atomic force microscopy (AFM) results showed that although most MWCNTs were located in the PC dispersed phase, some of them migrated to the polymer matrix. This is due to the partial miscibility and intimate contact at the interfaces between blend components. Non-isothermal differential scanning calorimetry (DSC) scans for the PCL/PBS blends showed an increase in the crystallization temperature (Tc) of the PCL-rich phase indicating a nucleation effect caused by the PBS-rich phase. For the nanocomposites, there was a decrease in Tc values. This was attributed to a competition between two effects: (1) The partial miscibility of the PC-rich and the PCL-rich and PBS-rich phases, and (2) the nucleation effect of the MWCNTs. The decrease in Tc values indicated that miscibility was the dominating effect. Isothermal crystallization results showed that the nanocomposites crystallized slower than the neat blends and the homopolymers. The introduction of the masterbatch generally increased the thermal conductivity of the blend nanocomposites and affected the mechanical properties.

7.
J Nanosci Nanotechnol ; 8(4): 1880-5, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18572589

RESUMO

Polycarbonate (PC)/modified clay nanocomposites were prepared, in the absence and presence of different amounts of maleic anhydride grafted polypropylene (PP-g-MA), by direct melt blending. Their structures, as well as mechanical, morphological and thermal properties, were characterized by X-ray diffractometry (XRD), tensile testing, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The XRD results of the PC/clay nanocomposites showed that they had intercalated structures, although some exfoliation was visible at low clay contents, that the gallery heights of the PC/clay nanocomposites were almost the same, and that some of the clay layers collapsed as a result of modifier decomposition at the high processing temperature. The XRD patterns of the PC/PP-g-MA/clay nanocomposites clearly show less intercalation and more exfoliation with increasing PP-g-MA content. These results were supported by TEM observations. Both the tensile strength and modulus show substantial improvements with both increasing clay and PP-g-MA contents, while the elongation at break substantially decreases, although the presence of PP-g-MA somewhat improves these values. All the nanocomposites have lower thermal stability than pure PC, but the presence of PP-g-MA seems to improve the thermal stability of these samples.


Assuntos
Silicatos de Alumínio/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Cimento de Policarboxilato/química , Argila , Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração
8.
J Nanosci Nanotechnol ; 8(4): 1886-94, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18572590

RESUMO

Oxidized paraffin wax was used as a compatibilizer in composites of linear low-density polyethylene and layered nano silicate clays. X-ray diffraction analyses were carried out to investigate the crystalline morphology of five types of clays, oxidized wax, and their composites with LLDPE. The composites exhibited different X-ray diffraction and dynamic mechanical behaviour in the presence of different clays. Generally, the composites retained the partially crystalline behaviour of LLDPE, and no exfoliation was observed. Increased amount of wax did not change the morphology in most cases. The incorporation of clay resulted in an observable increase in the storage modulus of LLDPE. These values also increased with the addition of oxidized wax for most of the composites. The loss modulus increased with the amount of clay, irrespective of its nature. In most cases these values also increased with the incorporation of wax. The composites with 10% clay and 10% oxidized wax showed the highest storage and loss moduli, irrespective of the nature of the clay. The tan delta values did not change considerably with the addition of clay or wax.


Assuntos
Silicatos de Alumínio/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Polietileno/química , Ceras/química , Argila , Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Temperatura , Difração de Raios X
9.
J Nanosci Nanotechnol ; 8(4): 1679-89, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18572565

RESUMO

This article describes the thermal and thermomechanical properties of poly(butylene succinate) (PBS) and its nanocomposites. PBS nanocomposites with three different weight ratios of organically modified synthetic fluorine mica (OMSFM) have been prepared by melt-mixing in a batch mixer at 140 degrees C. The structure and morphology of the nanocomposites were characterized by X-ray diffraction (XRD) analyses and transmission electron microscopy (TEM) observations that reveal the homogeneous dispersion of the intercalated silicate layers into the PBS matrix. The thermal properties of pure PBS and the nanocomposite samples were studied by both conventional and temperature modulated differential scanning calorimetry (DSC) analyses, which show multiple melting behavior of the PBS matrix. The investigation of the thermomechanical properties was performed by dynamic mechanical analysis. Results reveal significant improvement in the storage modulus of neat PBS upon addition of OMSFM. The tensile modulus of neat PBS is also increased substantially with the addition of OMSFM, however, the strength at yield and elongation at break of neat PBS systematically decreases with the loading of OMSFM. The thermal stability of the nanocomposites compared to that of the pure polymer sample was examined under both pyrolytic and thermo-oxidative environments. It is shown that the thermal stability of PBS is increased moderately in the presence of 3 wt% of OMSFM, but there is no significant effect on further silicate loading in the oxidative environment. In the nitrogen environment, however, the thermal stability systematically decreases with increasing clay loading.


Assuntos
Butileno Glicóis/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Polímeros/química , Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Mecânica , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração , Termodinâmica , Temperatura de Transição
10.
Polymers (Basel) ; 10(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30966459

RESUMO

In this study, nanocomposites were prepared by melt blending poly(butylene succinate) (PBS) with a polycarbonate (PC)/multi-wall carbon nanotubes (MWCNTs) masterbatch, in a twin-screw extruder. The nanocomposites contained 0.5, 1.0, 2.0, and 4.0 wt% MWCNTs. Differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) results indicate that the blends are partially miscible, hence they form two phases (i.e., PC-rich and PBS-rich phases). The PC-rich phase contained a small amount of PBS chains that acted as a plasticizer and enabled crystallization of the PC component. In the PBS-rich phase, the amount of the PC chains present gave rise to increases in the glass transition temperature of the PBS phase. The presence of two phases was supported by scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis, where most MWCNTs aggregated in the PC-rich phase (especially at the high MWCNTs content of 4 wt%) and a small amount of MWCNTs were able to diffuse to the PBS-rich phase. Standard DSC scans showed that the MWCNTs nucleation effects saturated at 0.5 wt% MWCNT content on the PBS-rich phase, above this content a negative nucleation effect was observed. Isothermal crystallization results indicated that with 0.5 wt% MWCNTs the crystallization rate was accelerated, but further increases in MWCNTs loading (and also in PC content) resulted in progressive decreases in crystallization rate. The results are explained by increased MWCNTs aggregation and reduced diffusion rates of PBS chains, as the masterbatch content in the blends increased.

11.
Polymers (Basel) ; 9(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30966008

RESUMO

In this study, nanocomposites were prepared by melt blending poly (ε-caprolactone) (PCL) with a (polycarbonate (PC)/multi-wall carbon nanotubes (MWCNTs)) masterbatch in a twin-screw extruder. The nanocomposites contained 0.5, 1.0, 2.0, and 4.0 wt % MWCNTs. Even though PCL and PC have been reported to be miscible, our DSC (Differential Scanning Calorimetry), SAXS (Small Angle X-ray Scattering), and WAXS (Wide Angle X-ray Scattering) results showed partial miscibility, where two phases were formed (PC-rich and PCL-rich phases). In the PC-rich phase, the small amount of PCL chains included within this phase plasticized the PC component and the PC-rich phase was therefore able to crystallize. In contrast, in the PCL-rich phase the amount of PC chains present generates changes in the glass transition temperature of the PCL phase that were much smaller than those predicted by the Fox equation. The presence of two phases was corroborated by SEM, TEM, and AFM observations where a fair number of MWCNTs diffused from the PC-rich phase to the PCL-rich phase, even though there were some MWCNTs agglomerates confined to PC-rich droplets. Standard DSC measurements demonstrated that the MWCNTs nucleation effects are saturated at a 1 wt % MWCNT concentration on the PCL-rich phase. This is consistent with the dielectric percolation threshold, which was found to be between 0.5 and 1 wt % MWCNTs. However, the nucleating efficiency was lower than literature reports for PCL/MWCNTs, due to limited phase mixing between the PC-rich and the PCL-rich phases. Isothermal crystallization experiments performed by DSC showed an increase in the overall crystallization kinetics of PCL with increases in MWCNTs as a result of their nucleating effect. Nevertheless, the crystallinity degree of the nanocomposite containing 4 wt % MWCNTs decreased by about 15% in comparison to neat PCL. This was attributed to the presence of the PC-rich phase, which was able to crystallize in view of the plasticization effect of the PCL component, since as the MWCNT content increases, the PC content in the blend also increases. The thermal conductivities (i.e., 4 wt % MWCNTs) were enhanced by 20% in comparison to the neat material. The nanocomposites prepared in this work could be employed in applications were electrical conductivity is required, as well as lightweight and tailored mechanical properties.

12.
Int J Nanomedicine ; 12: 2205-2213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28356737

RESUMO

Herein, novel hybrid nanomaterials were developed for wound dressing applications with antimicrobial properties. Electrospinning was used to fabricate a double layer nanocomposite nanofibrous mat consisting of an upper layer of poly(vinyl alcohol) and chitosan loaded with silver nanoparticles (AgNPs) and a lower layer of polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP) nanofibers loaded with chlorhexidine (as an antiseptic). The top layer containing AgNPs, whose purpose was to protect the wound site against environmental germ invasion, was prepared by reducing silver nitrate to its nanoparticulate form through interaction with chitosan. The lower layer, which would be in direct contact with the injured site, contained the antibiotic drug needed to avoid wound infections which would otherwise interfere with the healing process. Initially, the upper layer was electrospun, followed sequentially by electrospinning the second layer, creating a bilayer nanofibrous mat. The morphology of the nanofibrous mats was studied by scanning electron microscopy and transmission electron microscopy, showing successful nanofiber production. X-ray diffraction confirmed the reduction of silver nitrate to AgNPs. Fourier transform infrared spectroscopy showed a successful incorporation of the material used in the produced nanofibrous mats. Thermal studies carried out by thermogravimetric analysis indicated that the PVP-drug-loaded layer had the highest thermal stability in comparison to other fabricated nanofibrous mats. Antimicrobial activities of the as-synthesized nanofibrous mats against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans were determined using disk diffusion method. The results indicated that the PEO-drug-loaded mat had the highest antibacterial activity, warranting further attention for numerous wound-healing applications.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/uso terapêutico , Bandagens , Nanocompostos/química , Nanofibras/química , Nanotecnologia/métodos , Infecção dos Ferimentos/tratamento farmacológico , Anti-Infecciosos/farmacologia , Candida/efeitos dos fármacos , Quitosana/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanofibras/ultraestrutura , Pseudomonas aeruginosa/efeitos dos fármacos , Nitrato de Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Termogravimetria , Cicatrização/efeitos dos fármacos , Difração de Raios X
13.
Nanomedicine (Lond) ; 11(6): 715-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26744905

RESUMO

Wound dressings play an important role in a patient's recovery from health problems, as unattended wounds could lead to serious complications such as infections or, ultimately, even death. Therefore, wound dressings since ancient times have been continuously developed, starting from simple dressings from natural materials for covering wounds to modern dressings with functionalized materials to aid in the wound healing process and enhance tissue repair. However, understanding the nature of a wound and the subsequent healing process is vital information upon which dressings can be tailored to ensure a patient's recovery. To date, much progress has been made through the use of nanomedicine in wound healing due to the ability of such materials to mimic the natural dimensions of tissue. This review provides an overview of recent studies on the physiology of wound healing and various wound dressing materials made of nanofibers fabricated using the electrospinning technique.


Assuntos
Bandagens , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/química , Polímeros/química , Cicatrização , Animais , Anti-Infecciosos/administração & dosagem , Bandagens/microbiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Metais/administração & dosagem , Nanofibras/ultraestrutura , Nanomedicina , Óxidos/administração & dosagem , Vitaminas/administração & dosagem , Cicatrização/efeitos dos fármacos
14.
Colloids Surf B Biointerfaces ; 135: 742-750, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26340364

RESUMO

Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that it is possible to detect these hybrid nanostructures within Escherichia coli cells.


Assuntos
Escherichia coli/química , Ouro/química , Nanopartículas Metálicas , Espectrofotometria Ultravioleta/métodos , Triptofano/química , Microscopia Eletrônica de Transmissão
15.
Carbohydr Polym ; 111: 149-82, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25037340

RESUMO

The subject on flammability properties of natural fibre-reinforced biopolymer composites has not been broadly researched. This is not only evidenced by the minimal use of biopolymer composites and/or blends in different engineering areas where fire risk and hazard to both human and structures is of critical concern, but also the limited amount of published scientific work on the subject. Therefore, it is necessary to expand knowledge on the flammability properties of biopolymers and add value in widening the range of their application. This paper reviews the literature on the recent developments on flammability studies of bio-fibres, biopolymers and natural fibre-reinforced biocomposites. It also covers the different types of flame retardants (FRs) used and their mechanisms, and discusses the principles and methodology of various flammability testing techniques.


Assuntos
Biopolímeros/química , Retardadores de Chama/análise , Animais , Butileno Glicóis/química , Calorimetria/instrumentação , Calorimetria/métodos , Desenho de Equipamento , Humanos , Poliésteres/química , Polímeros/química
16.
Carbohydr Polym ; 90(2): 1139-46, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22840051

RESUMO

A silver nanoparticle colloid was prepared by a modified Tollens method using d-glucose as the reduction agent. The obtained nanoparticles were used for the modification of pine, linter and recycled cellulose fibers. Although the silver contents were relatively low (0.05-0.13 wt.%), the cellulose-sheets prepared from the modified fibers show improved mechanical and viscoelastic properties. The tensile index (strength) increased with up to 30% in comparison to the index of the sheets obtained from the untreated fibers. The influence of the nanoparticles on the viscoelastic properties of the cellulose sheets was investigated by dynamic mechanical analysis (DMA) in the temperature range from -120 to 20 °C and with a force frequency of 100 Hz. A broad relaxation transition positioned at -80 °C was observed in the loss modulus spectrum of all the cellulose sheets, while the Ag-modified sheets exhibited higher storage moduli values in the whole temperature range. The antimicrobial activity tests show that the pine, silver and recycled cellulose fiber sheets with silver nanoparticles can be successfully employed to prevent the viability and growth of the common pathogens Staphylococcus aureus, Escherichia coli and Candida albicans.


Assuntos
Anti-Infecciosos/síntese química , Celulose/química , Nanopartículas Metálicas/química , Prata/química , Substâncias Viscoelásticas/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Coloides , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Nanofibras/química , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície , Temperatura , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA