Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 73: 201-213, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934176

RESUMO

The oxidized kaurene (Ox-Kau) compounds are the core structures of many important diterpenoids with biological activities and economical values. However, easy access to diverse Ox-Kau products is still limited by low natural abundance, and large-scale manufacture remain challenging due to lack of proper heterologous production. To achieve an abundant source alternative to natural extracts, we here report a highly effective Escherichia coli-based platform for the de novo production of multiple Ox-Kau molecules from simple carbon source. Pathway optimization in prokaryotic cells through modification of transmembrane CYP450 oxidases, cytochrome b5 co-expression and AlphaFold-based protein engineering improved a 50-fold yield of steviol (1.07 g L-1), a key intermediate in the kaurenoid biosynthesis. Combinatorial biosynthetic strategy further led to a series of oxidized derivatives (20-600 mg L-1) with rich oxygenated functional groups on C3, C7, C16 and C19 previously hard to be introduced. Our engineered strains not only laid a foundation for realizing the industrial fermentation of gram-scale ent-kaurene diterpenoids, but also provided a reliable platform for characterization and utilization of kaurene-modifying oxidases, which may generate naturally rare or unnatural ent-kaurenoids with potential bioactivity.


Assuntos
Alquil e Aril Transferases , Diterpenos do Tipo Caurano , Diterpenos , Alquil e Aril Transferases/metabolismo , Diterpenos/metabolismo , Diterpenos do Tipo Caurano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Plantas/metabolismo
2.
Appl Microbiol Biotechnol ; 100(14): 6119-6130, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27209041

RESUMO

Secondary metabolites possess a lot of biological activities, and to achieve their functions, transmembrane transportation is crucial. Elucidation of their transport mechanisms in the cell is critical for discovering ways to improve the production. Here, we have summarized the recent progresses for representative secondary metabolite transporters and also the strategies for uncovering the transporter systems in plants and microbes. We have also discussed the transporter engineering strategies being utilized for improving the heterologous natural product production, which exhibits promising future under the guide of synthetic biology.


Assuntos
Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica , Engenharia de Proteínas , Metabolismo Secundário/fisiologia , Aspergillus/metabolismo , Produtos Biológicos/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Compostos Fitoquímicos/biossíntese , Plantas/química , Saccharomyces cerevisiae/metabolismo , Streptomyces coelicolor/metabolismo , Biologia Sintética
3.
Appl Microbiol Biotechnol ; 99(20): 8691-700, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26062534

RESUMO

Expelling heterologous compounds out of hosts by transporters is a potential strategy to enhance product titers in microbial cell factories. In this work, to increase heterologous polyketide 6-deoxyerythronolide B (6dEB, erythromycin precursor) production, tripartite multidrug efflux pumps MacAB-TolC, AcrAB-TolC, MdtEF-TolC, and MexAB-OprM were modulated in a 6dEB production strain. Compared with the control, overexpression of a single component of efflux pumps (except oprM) repressed 6dEB production, but modulation of two components MacA and MacB or the complete pumps MacAB-TolC and MdtEF-TolC significantly improved 6dEB titer by 100 ± 11, 118 ± 54, and 98 ± 12 %, respectively. In addition, to avoid the challenging fine-tuning components of pumps, the transcriptional regulators of efflux pumps were modulated to improve the 6dEB production. Overexpression of RpoH (activator of MdtEF-TolC) and EvgA (activator of EmrKY-TolC and AcrAD-TolC) strongly increased 6dEB titer by 152 ± 54 and 142 ± 85 %, respectively. This is the first report of transporter engineering for improving heterologous polyketide production in Escherichia coli. Our results provide an effective strategy for improving the yield of the heterologous products in chassis cell.


Assuntos
Eritromicina/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Engenharia Metabólica/métodos , Policetídeos/metabolismo , Transporte Biológico Ativo , Eritromicina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39057339

RESUMO

Bamboo is an economically important crop that has gained prominence as an alternative to wood to reduce deforestation and ecosystem destruction. Diseases of bamboo that typically occur on leaves and stems can cause significant loss, reducing the quality and yield of the bamboo. However, there are few reports identifying the fungal species diversity and potential pathogens of bamboo. Here, we describe four new species of plant fungi from the leaves of bamboo within Fujian provinces, China. Fungi were isolated from diseased leaves collected within Fujian province and identified based on their morphological characteristics and multilocus phylogenies using nucleotide sequences derived from combined datasets of the intervening 5.8S nrRNA gene (ITS), the 28S large subunit of nuclear ribosomal RNA gene (LSU), the large subunit of RNA polymerase I (rpb1), the translation elongation factor 1-α gene (tef1-α), and the partial beta-tubulin gene (tub2). These analyses helped reveal and clarify taxonomic relationships in the family Magnaporthaceae. The new species of bambusicolous fungi identified include two species of Bifusisporella, described as B. fujianensis sp. nov. and B. bambooensis sp. nov., and two species of Apiospora, described as A. fujianensis sp. nov. and A. fuzhouensis sp. nov. This study further expands the characterization and distribution of fungi associated with bamboo.

5.
J Fungi (Basel) ; 10(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921368

RESUMO

Members of the fungal order Diaporthales are sac fungi that include plant pathogens (the notorious chestnut blight fungus), as well as saprobes and endophytes, and are capable of colonizing a wide variety of substrates in different ecosystems, habitats, and hosts worldwide. However, many Diaporthales species remain unidentified, and various inconsistencies within its taxonomic category remain to be resolved. Here, we aimed to identify and classify new species of Diaporthales by using combined morphological and molecular characterization and coupling this information to expand our current phylogenetic understanding of this order. Fungal samples were obtained from dead branches and diseasedleaves of Camellia (Theaceae) and Castanopsis (Fagaceae) in Fujian Province, China. Based on morphological characteristics and molecular phylogenetic analyses derived from the combined nucleotide sequences of loci of the internal transcribed spacer regions with the intervening 5.8S nrRNA gene (ITS), the 28S large subunit of nuclear ribosomal RNA gene (LSU), the translation elongation factor 1-α gene (tef1), the partial beta-tubulin gene (tub2), and partial RNA polymerase II second-largest subunit gene (rpb2), three new species of Diaporthales were identified and characterized. They are as follows: Chrysofolia camelliae sp. nov., Dendrostoma castanopsidis sp. nov., and Pseudoplagiostoma wuyishanense sp. nov. They are described and illustrated. This study extends our understanding of species diversity within the Diaporthales.

6.
J Fungi (Basel) ; 10(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248979

RESUMO

The characterization of natural fungal diversity impacts our understanding of ecological and evolutionary processes and can lead to novel bioproduct discovery. Russula and Lactarius, both in the order Russulales, represent two large genera of ectomycorrhizal fungi that include edible as well as toxic varieties. Based on morphological and phylogenetic analyses, including nucleotide sequences of the internal transcribed spacer (ITS), the 28S large subunit of ribosomal RNA (LSU), the second largest subunit of RNA polymerase II (RPB2), the ribosomal mitochondrial small subunit (mtSSU), and the translation elongation factor 1-α (TEF1-α) gene sequences, we here describe and illustrate two new species of Russula and one new species of Lactarius from southern China. These three new species are: R. junzifengensis (R. subsect. Virescentinae), R. zonatus (R. subsect. Crassotunicatae), and L. jianyangensis (L. subsect. Zonarii).

7.
Front Microbiol ; 15: 1379879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680916

RESUMO

Leaves of Camellia sinensis plants are used to produce tea, one of the most consumed beverages worldwide, containing a wide variety of bioactive compounds that help to promote human health. Tea cultivation is economically important, and its sustainable production can have significant consequences in providing agricultural opportunities and lowering extreme poverty. Soil parameters are well known to affect the quality of the resultant leaves and consequently, the understanding of the diversity and functions of soil microorganisms in tea gardens will provide insight to harnessing soil microbial communities to improve tea yield and quality. Current analyses indicate that tea garden soils possess a rich composition of diverse microorganisms (bacteria and fungi) of which the bacterial Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes and Chloroflexi and fungal Ascomycota, Basidiomycota, Glomeromycota are the prominent groups. When optimized, these microbes' function in keeping garden soil ecosystems balanced by acting on nutrient cycling processes, biofertilizers, biocontrol of pests and pathogens, and bioremediation of persistent organic chemicals. Here, we summarize research on the activities of (tea garden) soil microorganisms as biofertilizers, biological control agents and as bioremediators to improve soil health and consequently, tea yield and quality, focusing mainly on bacterial and fungal members. Recent advances in molecular techniques that characterize the diverse microorganisms in tea gardens are examined. In terms of viruses there is a paucity of information regarding any beneficial functions of soil viruses in tea gardens, although in some instances insect pathogenic viruses have been used to control tea pests. The potential of soil microorganisms is reported here, as well as recent techniques used to study microbial diversity and their genetic manipulation, aimed at improving the yield and quality of tea plants for sustainable production.

8.
Bioresour Bioprocess ; 8(1): 70, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38650224

RESUMO

Ferulic acid (p-hydroxy-3-methoxycinnamic acid, FA) is a natural active substance present in plant cell walls, with antioxidant, anticancer, antithrombotic and other properties; it is widely used in medicine, food, and cosmetics. Production of FA by eco-friendly bioprocess is of great potential. In this study, FA was biosynthesized by metabolically engineered Escherichia coli. As the first step, the genes tal (encoding tyrosine ammonia-lyase, RsTAL) from Rhodobacter sphaeroides, sam5 (encoding p-coumarate 3-hydroxylase, SeSAM5) from Saccharothrix espanaensis and comt (encoding Caffeic acid O-methytransferase, TaCM) from Triticum aestivum were cloned in an operon on the pET plasmid backbone, E. coli strain containing this construction was proved to produce FA from L-tyrosine successfully, and confirmed the function of TaCM as caffeic acid O-methytransferase. Fermentation result revealed JM109(DE3) as a more suitable host cell for FA production than BL21(DE3). After that the genes expression strength of FA pathway were optimized by tuning of promoter strength (T7 promoter or T5 promoter) and copy number (pBR322 or p15A), and the combination p15a-T5 works best. To further improve FA production, E. coli native pntAB, encoding pyridine nucleotide transhydrogenase, was selected from five NADPH regeneration genes to supplement redox cofactor NADPH for converting p-coumaric acid into caffeic acid in FA biosynthesis process. Sequentially, to further convert caffeic acid into FA, a non-native methionine kinase (MetK from Streptomyces spectabilis) was also overexpressed. Based on the flask fermentation data which show that the engineered E. coli strain produced 212 mg/L of FA with 11.8 mg/L caffeic acid residue, it could be concluded that it is the highest yield of FA achieved by E. coli K-12 strains reported to the best of our knowledge.

9.
Org Lett ; 19(7): 1816-1819, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28350168

RESUMO

Two GFPPS linked (+)-thalianatriene (1) and (-)-retigeranin B (2) sesterterpene synthase genes were identified from the genome of Arabidopsis thaliana. 1 possesses an unprecedented 11-6-5 tricyclic ring system, while 2 contains a characteristic 5-5-5-6-5 pentacyclic ring system. Their structures were determined by extensive NMR spectroscopy, chemical derivatization, and X-ray crystallography. The variable-temp NMR measurement of 3, a diepoxy-bearing derivative of 1, enables us to completely assign the NMR signals of the two conformers as 3a (67%, UUU) and 3b (33%, UUD). A plausible biosynthesis mechanism of 1 was proposed.


Assuntos
Arabidopsis , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Sesterterpenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA