Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
FASEB J ; 37(7): e22985, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249350

RESUMO

Osteoporosis is one of the chronic complications of type 1 diabetes with high risk of fracture. The prevention of diabetic osteoporosis is of particular importance. Static magnetic fields (SMFs) exhibit advantages on improvement of diabetic complications. The biological effects and mechanism of SMFs on bone health of type 1 diabetic mice and functions of bone cells under high glucose have not been clearly clarified. In animal experiment, six-week-old male C57BL/6J mice were induced to type 1 diabetes and exposed to SMF of 0.4-0.7 T for 4 h/day lasting for 6 weeks. Bone mass, biomechanical strength, microarchitecture and metabolism were determined by DXA, three-point bending assay, micro-CT, histochemical and biochemical methods. Exposure to SMF increased BMD and BMC of femur, improved biomechanical strength with higher ultimate stress, stiffness and elastic modulus, and ameliorated the impaired bone microarchitecture in type 1 diabetic mice by decreasing Tb.Pf, Ct.Po and increasing Ct.Th. SMF enhanced bone turnover by increasing the level of markers for bone formation (OCN and Collagen I) as well as bone resorption (CTSK and NFAT2). In cellular experiment, MC3T3-E1 cells or primary osteoblasts and RAW264.7 cells were cultured in 25 mM high glucose-stimulated diabetic marrow microenvironment under differentiation induction and exposed to SMF. SMF promoted osteogenesis with higher ALP level and mineralization deposition in osteoblasts, and it also enhanced osteoclastogenesis with higher TRAP activity and bone resorption in osteoclasts under high glucose condition. Further, SMF increased iron content with higher FTH1 expression and regulated the redox level through activating HO-1/Nrf2 in tibial tissues, and lowered hepatic iron accumulation by BMP6-mediated regulation of hepcidin and lipid peroxidation in mice with type 1 diabetes. Thus, SMF may act as a potential therapy for improving bone health in type 1 diabetes with regulation on iron homeostasis metabolism and redox status.


Assuntos
Reabsorção Óssea , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Osteoporose , Camundongos , Masculino , Animais , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Experimental/terapia , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese , Ferro/metabolismo , Oxirredução , Campos Magnéticos , Glucose
2.
Xenobiotica ; 53(6-7): 474-483, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819730

RESUMO

The in vitro metabolism of hirsutine was determined using liver microsomes and human recombinant cytochrome P450 enzymes. Under the current conditions, a total of 14 phase I metabolites were tentatively identified.Ketoconazole showed significant inhibitory effect on the metabolism of hirsutine. Human recombinant cytochrome P450 enzyme analysis revealed that metabolism of hirsutine was mainly catalysed by CYP3A4.Our data revealed that hirsutine was metabolised via mono-oxygenation, di-oxygenation, N-oxygenation, dehydrogenation, demethylation and hydrolysis.In glutathione (GSH)-supplemented liver microsomes, four GSH adducts were identified. Hirsutine underwent facile P450-mediated metabolic activation, forming reactive 3-methyleneindolenine and iminoquinone intermediates.This study provided valuable information on the metabolic fates of hirsutine in liver microsomes, which would aid in understanding the hepatotoxicity caused by hirsutine or hirsutine-containing herb preparation.


Assuntos
Alcaloides , Antineoplásicos , Uncaria , Humanos , Alcaloides/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Antineoplásicos/metabolismo , Microssomos Hepáticos/metabolismo
3.
BMC Oral Health ; 23(1): 660, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704975

RESUMO

BACKGROUND: Enucleation, a surgical procedure, is commonly used to treat large jaw cysts, unicystic ameloblastomas and keratocysts. However, it remains unclear to what extent the jaw bone regenerates after enucleation. We aimed to evaluate the percentage and the survival analysis of jaw bone regeneration, in terms of cavity volume residual (CVR), in patients who underwent enucleation of large jaw cysts, unicystic ameloblastomas and keratocysts. METHODS: We collected data longitudinally from 75 patients who underwent jaw cystic lesions enucleation at the Stomatological Hospital of Xi'an Jiaotong University, between January 2015 and June 2021. All patients had both preoperative and postoperative cone-beam computed tomography (CBCT) imaging data. CBCT images were analyzed using Image J. Changes in the CVR were assessed at various follow-up time points, and the Kaplan-Meier method was utilized to evaluate the CVR over time. RESULTS: The patients had a mean age of 31.7 years (range: 5.5-72 years) with 58.66% of them being male. The postoperative CVR was 32.20% at three months, 21.10% at six months, 15.90% at 12 months, and 5.60% at 24 months. The percentage of CVR during follow-up periods for the initial size Quartile (Q)1 (212.54-1569.60 mm3) was substantially lower than those of Q2 and Q3 at and after seven months of follow-up and became statistically significant at the 12-month mark. CONCLUSION: This study demonstrates that spontaneous bone regeneration can occur after enucleation of large jaw cysts, unicystic ameloblastomas and keratocysts, even without the use of filler materials. The initial size of the lesion had a significant impact on the outcome of cystic lesion enucleation over time. To minimize the risks associated with radiation exposure and expenses, we recommend reducing the frequency of CT imaging follow-ups for patients with small initial cavity sizes (ranging from 212.54 to 1569.60 mm3).


Assuntos
Ameloblastoma , Cárie Dentária , Cistos Maxilomandibulares , Cistos Odontogênicos , Adulto , Feminino , Humanos , Masculino , Regeneração Óssea , Tomografia Computadorizada de Feixe Cônico , Cistos Odontogênicos/diagnóstico por imagem , Cistos Odontogênicos/cirurgia , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso
4.
Ecotoxicol Environ Saf ; 230: 113125, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971997

RESUMO

OBJECTIVES: This study evaluated the associated biological effects of radio-frequency (RF) exposure at 16 T magnetic resonance imaging (MRI) on mice health. MATERIAL AND METHODS: A total of 48 healthy 8-week-old male C57BL/6 mice were investigated. A 16 T high static magnetic field (HiSMF) was generated by a superconducting magnet, and a radiofrequency (RF) electromagnetic field for hydrogen resonance at 16 T (700 MHz) was transmitted via a homemade RF system. The mice were exposed inside the 16 T HiSMF with the 700 MHz RF field for 60 min, and the body weight, organ coefficients, histomorphology of major organs, and blood indices were analyzed for the basal state of the mice on day 0 and day 14. The Heat Shock Protein 70 (HSP70), cyclooxygenase 2 (COX2), and interleukin- 6 (IL-6) were used to evaluate the thermal effects on the brain. Locomotor activity, the open field test, tail suspension test, forced swimming test, and grip strength test were used to assess the behavioral characteristics of the mice. RESULTS: The 16 T HiSMF with 700 MHz RF electromagnetic field exposure had no significant effects on body weight, organ coefficients, or histomorphology of major organs in the mice. On day 0, the expressions of HSP70 and COX2 in the brain were increased by 16 T HiSMF with 700 MHz RF electromagnetic field exposure. However, the expression of HSP70, COX2, and IL-6 had no significant difference compared with the sham group on day 14. Compared with the sham groups, the meancorpuscularvolume (MCV) on day 0 and the total protein (TP) on day 14 were increased significantly, whereas the other blood indices did not change significantly. The 16 T HiSMF with 700 MHz RF electromagnetic field exposure caused the mice to briefly circle tightly but had no effect on other behavioral indicators. CONCLUSIONS: In summary, 16 T HiSMF with 700 MHz RF electromagnetic field exposure for 60 min did not have severe effects on mice.

5.
Vet Res ; 52(1): 25, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596995

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly contagious virus that has led to enormous economic loss worldwide because of ineffective prevention and treatment. In view of their minimized size, high target specificity and affinity, nanobodies have been extensively investigated as diagnostic tools and treatments of many diseases. Previously, a PRRSV Nsp9-specific nanobody (Nb6) was identified as a PRRSV replication inhibitor. When it was fused with cell-penetrating peptide (CPP) TAT, Nb6-TAT could enter the cells for PRRSV suppression. However, delivery of molecules by CPP lack cell specificity and have a short duration of action. PRRSV has a tropism for monocyte/macrophage lineage, which expresses high levels of Fcγ receptors. Herein, we designed a nanobody containing porcine IgG Fc (Fcγ) to inhibit PRRSV replication in PRRSV permissive cells. Fcγ fused Nb6 chimeric antibody (Nb6-pFc) was assembled into a dimer with interchain disulfide bonds and expressed in a Pichia pastoris system. The results show that Nb6-pFc exhibits a well-binding ability to recombinant Nsp9 or PRRSV-encoded Nsp9 and that FcγR-mediated endocytosis of Nb6-pFc into porcine alveolar macrophages (PAM) was in a dose-dependent manner. Nb6-pFc can inhibit PRRSV infection efficiently not only by binding with Nsp9 but also by upregulating proinflammatory cytokine production in PAM. Together, this study proposes the design of a porcine IgG Fc-fused nanobody that can enter PRRSV susceptible PAM via FcγR-mediated endocytosis and inhibit PRRSV replication. This research reveals that nanobody-Fcγ chimeric antibodies might be effective for the control and prevention of monocyte/macrophage lineage susceptible pathogeneses.


Assuntos
Imunoglobulina G/imunologia , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Receptores de IgG/fisiologia , Anticorpos de Domínio Único/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Anticorpos de Domínio Único/química , Suínos , Replicação Viral
6.
Appl Microbiol Biotechnol ; 105(21-22): 8505-8516, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34633486

RESUMO

Hepatitis E, a significant global public health issue in China, is caused by sporadic infections with regional hepatitis E virus (HEV) genotypes 1, 3, and 4. To date, most immunoassays currently used to test human sera for the presence of anti-HEV antibodies cannot identify HEV at the genotype level. However, such information would be useful for identifying the source of infecting virus. Therefore, here we describe the development of a competitive enzyme-linked immunosorbent assay (ELISA) for detecting anti-genotype 1 HEV antibodies in human sera. Using recombinant genotype 1 HEV ORF3 protein as immunogen, traditional hybridoma technology was employed to generate seven monoclonal antibodies (mAbs), of which two mAbs specifically reacted with the immunogen. One of these two mAbs, 1D2, was labeled with horseradish peroxidase (HRP) for use in competitive ELISA (cELISA). After cELISA optimization using a checkerboard assay design, the amount of ORF3SAR-55 as coating antigen (100 ng/well), HRP-1D2 mAb concentration (1 µg/mL), and test serum dilution (1:10) were selected and a result ≥ 19.5 was used as the cutoff for a positive result. Importantly, cross-genotype cELISA results indicated that the cELISA could not detect anti-genotype 3 rabbit and 4 swine HEV antibodies. Moreover, human sera confirmed as negative for anti-HEV antibodies using the commercial ELISA kit were all negative via cELISA. However, because the commercial ELISA kit detects anti-all genotypes HEV antibodies and the cELISA only detects anti-genotype 1 HEV antibodies, the consistence rate of two assays detecting positive sera is low. In summary, here a cELISA for detecting anti-genotype 1 HEV antibodies was developed for use in epidemiological investigations of genotype 1 HEV infections in humans. KEY POINTS: • Seven mAbs were produced using genotype 1 HEV ORF3 protein as immunogen. • One mAb that specifically bound to genotype 1 HEV ORF3 protein was selected and labeled for use in a cELISA to detect anti-genotype 1 HEV antibodies. • The competitive ELISA developed here will aid clinical diagnosis of HEV infections and will be useful for large-scale serological testing of genotype 1 HEV infections in humans.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Genótipo , Anticorpos Anti-Hepatite , Hepatite E/diagnóstico , Vírus da Hepatite E/genética , Coelhos , Suínos
7.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281233

RESUMO

Osteosarcoma is a common malignant bone tumor in clinical orthopedics. Iron chelators have inhibitory effects on many cancers, but their effects and mechanisms in osteosarcoma are still uncertain. Our in vitro results show that deferoxamine (DFO) and deferasirox (DFX), two iron chelators, significantly inhibited the proliferation of osteosarcoma cells (MG-63, MNNG/HOS and K7M2). The viability of osteosarcoma cells was decreased by DFO and DFX in a concentration-dependent manner. DFO and DFX generated reactive oxygen species (ROS), altered iron metabolism and triggered apoptosis in osteosarcoma cells. Iron chelator-induced apoptosis was due to the activation of the MAPK signaling pathway, with increased phosphorylation levels of JNK, p38 and ERK, and ROS generation; in this process, the expression of C-caspase-3 and C-PARP increased. In an orthotopic osteosarcoma transplantation model, iron chelators (20 mg/kg every day, Ip, for 14 days) significantly inhibited the growth of the tumor. Immunohistochemical analysis showed that iron metabolism was altered, apoptosis was promoted, and malignant proliferation was reduced with iron chelators in the tumor tissues. In conclusion, we observed that iron chelators induced apoptosis in osteosarcoma by activating the ROS-related MAPK signaling pathway. Because iron is crucial for cell proliferation, iron chelators may provide a novel therapeutic strategy for osteosarcoma.


Assuntos
Deferasirox/uso terapêutico , Desferroxamina/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Sideróforos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Deferasirox/farmacologia , Desferroxamina/farmacologia , Humanos , Ferro/metabolismo , Camundongos , Osteossarcoma/metabolismo , Sideróforos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Acta Pharmacol Sin ; 41(8): 1119-1132, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32132657

RESUMO

Phenethyl isothiocyanate (PEITC) is an isothiocyanate that largely exists in cruciferous vegetables and exhibits chemopreventive and chemotherapeutic potential against various cancers. However, it is little known about the molecular mechanisms of its antitumor action against osteosarcoma, which is the second highest cause of cancer-related death in children and adolescents. In this study, we investigated the effects of PEITC on K7M2 murine osteosarcoma both in vitro and in vivo. We found that treatment with PEITC dose-dependently inhibited the viability of K7M2 murine osteosarcoma cells with an IC50 value of 33.49 µM at 24 h. PEITC (1, 15, 30 µM) dose-dependently inhibited the cell proliferation, caused G2/M cell cycle arrest, depleted glutathione (GSH), generated reactive oxygen species (ROS), altered iron metabolism, and triggered multiple forms of cell death, namely ferroptosis, apoptosis, and autophagy in K7M2 cells. We further revealed that PEITC treatment activated MAPK signaling pathway, and ROS generation was a major cause of PEITC-induced cell death. In a syngeneic orthotopic osteosarcoma mouse model, administration of PEITC (30, 60 mg/kg every day, ig, for 24 days) significantly inhibited the tumor growth, but higher dose of PEITC (90 mg/kg every day) compromised its anti-osteosarcoma effect. Histological examination showed that multiple cell death processes were initiated, iron metabolism was altered and MAPK signaling pathway was activated in the tumor tissues. In conclusion, we demonstrate that PEITC induces ferroptosis, autophagy, and apoptosis in K7M2 osteosarcoma cells by activating the ROS-related MAPK signaling pathway. PEITC has promising anti-osteosarcoma activity. This study sheds light on the redox signaling-based chemotherapeutics for cancers.


Assuntos
Antineoplásicos/uso terapêutico , Glutationa/metabolismo , Ferro/metabolismo , Isotiocianatos/uso terapêutico , Osteossarcoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C
9.
Eur Radiol ; 29(11): 6029-6037, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31115627

RESUMO

OBJECTIVES: We aimed to evaluate the biological effects of high static magnetic field (HiSMF, 2-12 Tesla [T]) exposure on mice in a stable and effective breeding environment in the chamber of a superconducting magnet. METHODS: C57BL/6 mice were bred in the geomagnetic field and HiSMF with different magnetic field strengths (2-4 T, 6-8 T, and 10-12 T) for 28 days. The body weight, blood indices, organ coefficients, and histomorphology of major organs were analyzed. RESULTS: The results showed that the HiSMF had no significant effect on the body weight, organ coefficients, or histomorphology of major organs in mice. The HiSMF had no effect on most routine blood and biochemical indices, but the value of the mean corpuscular hemoglobin (MCH) was increased in the 2-4 T group compared with that of the other groups, and the uric acid level (UA) was decreased in the three HiSMF groups compared with that of the control group. CONCLUSION: The C57BL/6 mice were not affected when they were exposed to different HiSMF environments for 28 days. KEY POINTS: • No physiological problems were observed in mice with long-term whole-body exposure to HiSMF.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Exposição à Radiação , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
10.
J Cell Biochem ; 119(11): 9178-9204, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30076742

RESUMO

Iron metabolism is crucial to hepatocellular carcinoma progression and is a key determinant of prognosis. Protein-protein interactions within the iron metabolism gene network were analyzed using the European Molecular Biology Laboratory's Search Tool for Recurring Instances of Neighbouring Genes/Proteins database. We obtained 423 liver hepatocellular carcinoma gene expression profiles from the Cancer Genome Atlas database. The expression and pathway enrichment of representative iron intake genes (TFRC and DMT1), utilization genes (FTH1, FTL, HIF1A, HMOX1, SLC25A37, and SLC25A38), and efflux genes (FLVCR1 and SLC40A1) was investigated in tumor and adjacent tissues. We determined the relationship between iron metabolism and the prognostic features of liver hepatocellular carcinoma. The liver metabolism genes TFRC and FLVCR1 were related to survival, disease status, and prognosis in patients with hepatocellular carcinoma. Our results provide novel insight into liver cancer therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ferro/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Humanos , Masculino , Prognóstico , Transcriptoma
11.
Int J Mol Sci ; 19(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789480

RESUMO

Iron is an essential element for the growth and proliferation of cells. Cellular iron uptake, storage, utilization and export are tightly regulated to maintain iron homeostasis. However, cellular iron metabolism pathways are disturbed in most cancer cells. To maintain rapid growth and proliferation, cancer cells acquire large amounts of iron by altering expression of iron metabolism- related proteins. In this paper, normal cellular iron metabolism and the alterations of iron metabolic pathways in cancer cells were summarized. Therapeutic strategies based on targeting the altered iron metabolism were also discussed and disrupting redox homeostasis by intracellular high levels of iron provides new insight for cancer therapy. Altered iron metabolism constitutes a promising therapeutic target for cancer therapy.


Assuntos
Ferro/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Homeostase , Humanos , Neoplasias/tratamento farmacológico , Oxirredução
12.
Int J Mol Sci ; 17(12)2016 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-27999357

RESUMO

Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Cromatografia de Fase Reversa/métodos , Cristalografia por Raios X/métodos , Eletroforese em Gel Bidimensional/métodos , Ressonância Magnética Nuclear Biomolecular/métodos
13.
Int J Mol Sci ; 17(12)2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27918446

RESUMO

Osteoporosis is a progressive skeletal disorder characterized by low bone mass and increased risk of fracture in later life. The incidence and costs associated with treating osteoporosis cause heavy socio-economic burden. Currently, the diagnosis of osteoporosis mainly depends on bone mineral density and bone turnover markers. However, these indexes are not sensitive and accurate enough to reflect the osteoporosis progression. Metabolomics offers the potential for a holistic approach for clinical diagnoses and treatment, as well as understanding of the pathological mechanism of osteoporosis. In this review, we firstly describe the study subjects of osteoporosis and bio-sample preparation procedures for different analytic purposes, followed by illustrating the biomarkers with potentially predictive, diagnosis and pharmaceutical values when applied in osteoporosis research. Then, we summarize the published metabolic pathways related to osteoporosis. Furthermore, we discuss the importance of chronological data and combination of multi-omics in fully understanding osteoporosis. The application of metabolomics in osteoporosis could provide researchers the opportunity to gain new insight into the metabolic profiling and pathophysiological mechanisms. However, there is still much to be done to validate the potential biomarkers responsible for the progression of osteoporosis and there are still many details needed to be further elucidated.


Assuntos
Biomarcadores/metabolismo , Pesquisa Biomédica , Metabolômica/métodos , Osteoporose/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Osteoporose/tratamento farmacológico
14.
Phytochem Anal ; 26(6): 444-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26103066

RESUMO

INTRODUCTION: The dried seeds of Iris lactea have been used in traditional Chinese medicine. Previous studies have been focused on irisquinones while other chemical components are rarely reported. OBJECTIVE: To establish an efficient high-speed counter-current chromatography (HSCCC) separation method with continuous sample load (CSL) and double-pump balancing (DPB) mode to isolate proanthocyanidins from I. lactea. METHODS: Firstly, an ethyl acetate extract of I. lactea was pre-fractionated by silica column chromatography for the enrichment of proanthocyanidins. Secondly, the enriched proanthocyanidins sample (EPS) was further fractionated by HSCCC with a two-phase solvent system ethyl acetate:n-butanol:water (9:1:10, v/v/v) using DPB mode. The flow rate of the two phases was 2.2 mL/min, the revolution speed was 900 rpm, the separation temperature was 30 °C and the detection wavelength was 280 nm. Finally, the structures of the three isolated proanthocyanidins were elucidated by spectroscopic methods and compared with published data. RESULTS: Under the optimized conditions, 600 mg of the EPS with six continuous injections (100 mg/time) was fractionated, yielding 57 mg of prodelphinidin B3, 198 mg of procyanidin B3, and 162 mg of procyanidin B1, at purities of 97.2%, 98.1% and 97.3%, respectively. CONCLUSIONS: The HSCCC separation method with CSL and DPB proved to be rapid, convenient and economical, constituting an efficient strategy for the isolation of proanthocyanidins.


Assuntos
Distribuição Contracorrente/métodos , Gênero Iris/química , Proantocianidinas/isolamento & purificação , Sementes/química , Distribuição Contracorrente/economia , Distribuição Contracorrente/instrumentação
15.
BMC Health Serv Res ; 14: 217, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24885101

RESUMO

BACKGROUND: To describe and evaluate the effectiveness of tailored intervention on village doctor's use of electronic health records (EHR) in rural community health services in less developed areas. METHODS: Ten townships were selected. In each township, two similar health service station (CHSS) were chosen. One was randomly as allocated to the intervention group, the other to the control group. Over six monthly visits, a structured on-site intervention including education, supervision and technical support was provided to village doctors in the intervention group tailored to their needs. The Control group received no visits. A sample of 20 families from each CHSS was randomly chosen. An online evaluation of each family's EHR was conducted by the investigators at baseline and at the end of the 6 month intervention. RESULTS: In the intervention group, the proportion of households with complete records increased: basic personal information from 2.6% to 32.5%, (Z = -15.099, P = 0.000) and health education records from 0.3% to 1.6% (Z = -4.459, P = 0.000). Similarly at baseline none of the 80 elders had her records. This increased in the intervention group to 16.4% recorded in part and 37.0% in full (Z = -7.480, P = 0.000). The proportion of complete health management records for children aged 1 to 2 years and 3 to 6 years increased from 28.6% and 33.3% to 66.7% and 74.2% respectively (the difference of children group 3 to 6 years of age was statistically significant, Z = -3.860, p = 0.000). The proportion of complete basic clinic records in the intervention group increased from 7.6% to 13.9% (Z = -3.252, P = 0.001). There were no significant differences in the control group. CONCLUSIONS: The pilot study showed that a on-site education, supervision and technical support tailored to their needs was associated with improvements in village doctors use of EHR. This model is worthy of implementation in other rural areas.


Assuntos
Difusão de Inovações , Registros Eletrônicos de Saúde/estatística & dados numéricos , Médicos de Família , Adulto , Atitude Frente aos Computadores , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , População Rural , Adulto Jovem
16.
Prog Biophys Mol Biol ; 177: 14-23, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240898

RESUMO

With the widespread use of static magnetic fields (SMFs) in medicine, it is imperative to explore the biological effects of SMFs and the mechanisms underlying their effects on biological systems. The presence of magnetic materials within cells and organisms could affect various biological metabolism and processes, including stress responses, proliferation, and structural alignment. SMFs were generally found to be safe at the organ and organism levels. However. human subjects exposed to strong SMFs have reported side effects. In this review, we combined the magnetic properties of biological samples to illustrate the mechanism of action of SMFs on biological systems from a biophysical point of view. We suggest that the mechanisms of action of SMFs on biological systems mainly include the induction of electric fields and currents, generation of magnetic effects, and influence of electron spins. An electrolyte flowing in a static magnetic field generates an induced current and an electric field. Magnetomechanical effects include orientation effects upon subjecting biological samples to SMFs and movement of biological samples in strong field gradients. SMFs are thought to affect biochemical reaction rates and yields by influencing electron spin. This paper helps people how can harness the favorable biological effects of SMFs.


Assuntos
Campos Magnéticos , Humanos , Biofísica
17.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166740, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142133

RESUMO

Phenethyl isothiocyanate (PEITC), a kind of isothiocyanate available in cruciferous vegetables, exhibits inhibitory effects on cancers. PEITC has been extensively recorded for its effect on regulation of redox status in cancer cells. Our previous studies revealed that PEITC induced ROS-dependent cell death in osteosarcoma. Mitochondria are the main sites for ROS generation and play significant role in deciding cell fate. To dissect the mechanism of PEITC's action on osteosarcoma cells, we detected the changes on mitochondrial network, function and metabolism in K7M2 and 143B cells. Here, PEITC induced cytosolic, lipid and mitochondrial ROS production in osteosarcoma cells. It changed mitochondrial morphology from elongated to punctate network and decreased mitochondrial mass. Meantime, PEITC increased mitochondrial transmembrane potential in short time, decreased it with time prolonged, and later collapsed it in K7M2 cells, and reduced it in 143B cells. PEITC inhibited proliferation potential of osteosarcoma cells with damage on mitochondrial respiratory chain complexes. Further, PEITC-treated osteosarcoma cells experienced a sudden increase in ATP level, and later its content was decreased. Moreover, PEITC downregulated the expressions of mitochondrial respiratory chain complexes including COX IV, UQCR, SDHA and NDUFA9 in 143B cells and COX IV in K7M2 cells. At last, by using ρ0 cells derived from K7M2 and 143B cells, we found that osteosarcoma cells that depleted mtDNA were less sensitive to PEITC-induced changes on cellular morphology, cytoskeleton filament, mitochondrial transmembrane potential and ROS generation. In conclusion, our study demonstrated that mitochondria may play important role in PEITC-induced oxidative cell death in osteosarcoma cells.


Assuntos
Apoptose , Osteossarcoma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Morte Celular , Isotiocianatos/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxirredução , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
18.
iScience ; 26(8): 107365, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554458

RESUMO

Osteocytes are the mechano-sensors of bones. Large gradient high-static magnetic fields (LG-HMFs) produce stable, high-precision, and non-attenuation mechanical forces. We discovered that magnetic forces opposite to gravity inhibited MLO-Y4 osteocyte proliferation and viability by inducing structural damage and apoptosis. In contrast, magnetic force loading in the same direction as that of gravity promoted the proliferation and inhibited apoptosis of MLO-Y4 osteocytes. Differentially expressed gene (DEG) analysis after magnetic force stimulation indicated that the ECM-integrin-CSK axis responded most significantly to mechanical signals. Wisp2 was the most significant DEG between the 12 T upward and downward groups, showing the highest correlation with the Wnt pathway according to the STRING protein interaction database. Explaining the cellular and molecular mechanisms by which mechanical stimuli influence bone remodeling is currently the focus of osteocyte-related research. Our findings provide insights into the effects of LG-HMFs on bone cells, which have further implications in clinical practice.

19.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166719, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37116230

RESUMO

Static magnetic fields (SMFs) exhibit significant effect on health care. However, the effect of SMF on hepatic metabolism and function in obesity and diabetes are still unknown. Liver is not only the main site for glucolipid metabolism but also the core part for iron metabolism regulation. Dysregulations of iron metabolism and redox status are risk factors for the development of hepatic injury and affect glucolipid metabolism in obesity and diabetes. Mice of HFD-induced obesity and HFD/streptozocin-induced diabetes were exposed to a moderate-intensity SMF (0.4-0.7 T, direction: upward, 4 h/day, 8 weeks). Results showed that SMF attenuated hepatic damage by decreasing inflammation and fibrosis in obese and diabetic mice. SMF had no effects on improving glucose/insulin tolerance but regulated proteins (GLUT1 and GLUT4) and genes (G6pc, Pdk4, Gys2 and Pkl) participating in glucose metabolism with phosphorylation of Akt/AMPK/GSK3ß. SMF also reduced lipid droplets accumulation through decreasing Plin2 and Plin5 and regulated lipid metabolism with elevated hepatic expressions of PPARγ and C/EBPα in obese mice. In addition, SMF decreased hepatic iron deposition with lower FTH1 expression and modulated systematic iron homeostasis via BMP6-mediated regulation of hepcidin. Moreover, SMF balanced hepatic redox status with regulation on mitochondrial function and MAPKs/Nrf2/HO-1 pathway. Finally, we found that SMF activated hepatic autophagy and enhanced lipophagy by upregulating PNPLA2 expression in obese and diabetic mice. Our results demonstrated that SMF significantly ameliorated the development of hepatic injury in obese and diabetic mice by inhibiting inflammatory level, improving glycolipid metabolism, regulating iron metabolism, balancing redox level and activating autophagy.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Campos Magnéticos , Ferro/metabolismo
20.
Metallomics ; 14(5)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35441682

RESUMO

Osteosarcoma is the most common primary bone malignancy in children and young adults, with a very poor prognosis. It is of great importance to develop targeted therapeutic strategies for osteosarcoma. Sulfasalazine (SAS) is an FDA-approved drug for the treatment of Crohn's disease, rheumatoid arthritis, and inflammatory bowel disease. It acts as an inhibitor of cystine/glutamate system, which is important for cellular glutathione synthesis and maintenance of GPx4 activity. Nowadays, SAS has been repurposed as an antitumor drug for inducing ferroptosis in cancers. This study aimed to uncover the role of iron in SAS-induced ferroptotic cell death in K7M2 osteosarcoma cells. Herein, SAS led to an iron-dependent cell death mode in K7M2 cells, accompanied with decreased antioxidant defense and increased production of cytosolic and lipid reactive oxygen species. Results also showed that iron supplement with ferric ammonium citrate (FAC) or ferrous ammonium sulfate (FAS) exacerbated the declined cell viability of SAS-treated K7M2 cells, while in the case of iron depletion, it weakened such suppression. Furthermore, iron promoted SAS-induced alterations on cell cycle, cytoskeleton, mitochondria morphology and function, and redox system. Iron also induced the dysfunction of autophagic activity in SAS-treated K7M2 cells. In conclusion, our study uncovered the essential role of iron in SAS's effects on K7M2 cells and provided the potential combined therapy of inhibition on antioxidant defense and an increase in oxidative potential, which further disturbed the redox status in tumor cells.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Criança , Humanos , Ferro/metabolismo , Osteossarcoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA