Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Immunol ; 25(3): 552-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263463

RESUMO

The steady flow of lactic acid (LA) from tumor cells to the extracellular space via the monocarboxylate transporter symport system suppresses antitumor T cell immunity. However, LA is a natural energy metabolite that can be oxidized in the mitochondria and could potentially stimulate T cells. Here we show that the lactate-lowering mood stabilizer lithium carbonate (LC) can inhibit LA-mediated CD8+ T cell immunosuppression. Cytoplasmic LA increased the pumping of protons into lysosomes. LC interfered with vacuolar ATPase to block lysosomal acidification and rescue lysosomal diacylglycerol-PKCθ signaling to facilitate monocarboxylate transporter 1 localization to mitochondrial membranes, thus transporting LA into the mitochondria as an energy source for CD8+ T cells. These findings indicate that targeting LA metabolism using LC could support cancer immunotherapy.


Assuntos
Antimaníacos , Ácido Láctico , Carbonato de Lítio , Mitocôndrias , Neoplasias , Humanos , Linfócitos T CD8-Positivos , Ácido Láctico/metabolismo , Carbonato de Lítio/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Antimaníacos/farmacologia
2.
Nat Immunol ; 24(1): 162-173, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471170

RESUMO

Amino acid metabolism is essential for cell survival, while the byproduct ammonia is toxic and can injure cellular longevity. Here we show that CD8+ memory T (TM) cells mobilize the carbamoyl phosphate (CP) metabolic pathway to clear ammonia, thus promoting memory development. CD8+ TM cells use ß-hydroxybutyrylation to upregulate CP synthetase 1 and trigger the CP metabolic cascade to form arginine in the cytosol. This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. Cytosolic arginine is also converted to nitric oxide and citrulline by nitric oxide synthases. Thus, both the urea and citrulline cycles are employed by CD8+ T cells to clear ammonia and enable memory development. This ammonia clearance machinery might be targeted to improve T cell-based cancer immunotherapies.


Assuntos
Amônia , Citrulina , Citrulina/metabolismo , Amônia/metabolismo , Ureia/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Óxido Nítrico , Arginina/metabolismo , Arginase/metabolismo
3.
Nat Immunol ; 24(12): 2042-2052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919525

RESUMO

Tumor-derived factors are thought to regulate thrombocytosis and erythrocytopenia in individuals with cancer; however, such factors have not yet been identified. Here we show that tumor cell-released kynurenine (Kyn) biases megakaryocytic-erythroid progenitor cell (MEP) differentiation into megakaryocytes in individuals with cancer by activating the aryl hydrocarbon receptor-Runt-related transcription factor 1 (AhR-RUNX1) axis. During tumor growth, large amounts of Kyn from tumor cells are released into the periphery, where they are taken up by MEPs via the transporter SLC7A8. In the cytosol, Kyn binds to and activates AhR, leading to its translocation into the nucleus where AhR transactivates RUNX1, thus regulating MEP differentiation into megakaryocytes. In addition, activated AhR upregulates SLC7A8 in MEPs to induce positive feedback. Importantly, Kyn-AhR-RUNX1-regulated MEP differentiation was demonstrated in both humanized mice and individuals with cancer, providing potential strategies for the prevention of thrombocytosis and erythrocytopenia.


Assuntos
Neoplasias , Trombocitose , Animais , Camundongos , Cinurenina/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Megacariócitos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Precursoras Eritroides/metabolismo , Diferenciação Celular/fisiologia , Neoplasias/metabolismo , Trombocitose/metabolismo , Viés
4.
Nat Immunol ; 22(3): 358-369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432230

RESUMO

CD8+ T cell exhaustion dampens antitumor immunity. Although several transcription factors have been identified that regulate T cell exhaustion, the molecular mechanisms by which CD8+ T cells are triggered to enter an exhausted state remain unclear. Here, we show that interleukin-2 (IL-2) acts as an environmental cue to induce CD8+ T cell exhaustion within tumor microenvironments. We find that a continuously high level of IL-2 leads to the persistent activation of STAT5 in CD8+ T cells, which in turn induces strong expression of tryptophan hydroxylase 1, thus catalyzing the conversion to tryptophan to 5-hydroxytryptophan (5-HTP). 5-HTP subsequently activates AhR nuclear translocation, causing a coordinated upregulation of inhibitory receptors and downregulation of cytokine and effector-molecule production, thereby rendering T cells dysfunctional in the tumor microenvironment. This molecular pathway is not only present in mouse tumor models but is also observed in people with cancer, identifying IL-2 as a novel inducer of T cell exhaustion.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Interleucina-2/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Neoplasias/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Microambiente Tumoral , 5-Hidroxitriptofano/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Interleucina-2/antagonistas & inibidores , Interleucina-2/genética , Células Jurkat , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células MCF-7 , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Triptofano Hidroxilase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cell ; 82(16): 3077-3088.e6, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35738262

RESUMO

Glycolysis facilitates the rapid recall response of CD8+ memory T (Tm) cells. However, it remains unclear whether Tm cells uptake exogenous glucose or mobilize endogenous sugar to fuel glycolysis. Here, we show that intracellular glycogen rather than extracellular glucose acts as the major carbon source for the early recall response. Following antigenic stimulation, Tm cells exhibit high glycogen phosphorylase (brain form, PYGB) activity, leading to glycogenolysis and release of glucose-6-phosphate (G6P). Elevated G6P mainly flows to glycolysis but is also partially channeled to the pentose phosphate pathway, which maintains the antioxidant capacity necessary for later recall stages. Mechanistically, TCR signaling directly induces phosphorylation of PYGB by LCK-ZAP70. Functionally, the glycogenolysis-fueled early recall response of CD8+ Tm cells accelerates the clearance of OVA-Listeria monocytogenes in an infected mouse model. Thus, we uncover a specific dependency on glycogen for the initial activation of memory T cells, which may have therapeutic implications for adaptive immunity.


Assuntos
Glicogenólise , Animais , Linfócitos T CD8-Positivos , Glucose/metabolismo , Glicogênio/metabolismo , Células T de Memória , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(11): e2317658121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437537

RESUMO

Identification of mechanisms that program early effector T cells to either terminal effector T (Teff) or memory T (Tm) cells has important implications for protective immunity against infections and cancers. Here, we show that the cytosolic transcription factor aryl hydrocarbon receptor (AhR) is used by early Teff cells to program memory fate. Upon antigen engagement, AhR is rapidly up-regulated via reactive oxygen species signaling in early CD8+ Teff cells, which does not affect the effector response, but is required for memory formation. Mechanistically, activated CD8+ T cells up-regulate HIF-1α to compete with AhR for HIF-1ß, leading to the loss of AhR activity in HIF-1αhigh short-lived effector cells, but sustained in HIF-1αlow memory precursor effector cells (MPECs) with the help of autocrine IL-2. AhR then licenses CD8+ MPECs in a quiescent state for memory formation. These findings partially resolve the long-standing issue of how Teff cells are regulated to differentiate into memory cells.


Assuntos
Linfócitos T CD8-Positivos , Divisão Celular , Citosol , Espécies Reativas de Oxigênio
8.
EMBO J ; 40(2): e106123, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33274785

RESUMO

Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker-based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+ , ALDH+ , or side population CSCs, are able to form a tumor with only 100 cells in NOD-SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.


Assuntos
Carcinogênese/genética , Células-Tronco Neoplásicas/fisiologia , Antígeno AC133/genética , Aldeído Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Regulação para Cima/genética , Proteínas Wnt/genética
9.
Nat Cell Biol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261719

RESUMO

Ammonia is thought to be a cytotoxin and its increase in the blood impairs cell function. However, whether and how this toxin triggers cell death under pathophysiological conditions remains unclear. Here we show that ammonia induces a distinct form of cell death in effector T cells. We found that rapidly proliferating T cells use glutaminolysis to release ammonia in the mitochondria, which is then translocated to and stored in the lysosomes. Excessive ammonia accumulation increases lysosomal pH and results in the termination of lysosomal ammonia storage and ammonia reflux into mitochondria, leading to mitochondrial damage and cell death, which is characterized by lysosomal alkalization, mitochondrial swelling and impaired autophagic flux. Inhibition of glutaminolysis or blocking lysosomal alkalization prevents ammonia-induced T cell death and improves T cell-based antitumour immunotherapy. These findings identify a distinct form of cell death that differs from previously known mechanisms.

10.
Science ; 383(6684): eadi3332, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359126

RESUMO

The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.


Assuntos
Lipogênese , Glicogênio Hepático , Fígado , Pró-Proteína Convertases , Serina Endopeptidases , Uridina Difosfato Glucose , Animais , Humanos , Masculino , Camundongos , Carbono/metabolismo , Glucose/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pró-Proteína Convertases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Uridina Difosfato Glucose/administração & dosagem , Uridina Difosfato Glucose/metabolismo
11.
Nat Commun ; 15(1): 1405, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360940

RESUMO

Mechanical force contributes to perforin pore formation at immune synapses, thus facilitating the cytotoxic T lymphocytes (CTL)-mediated killing of tumor cells in a unidirectional fashion. How such mechanical cues affect CTL evasion of perforin-mediated autolysis remains unclear. Here we show that activated CTLs use their softness to evade perforin-mediated autolysis, which, however, is shared by T leukemic cells to evade CTL killing. Downregulation of filamin A is identified to induce softness via ZAP70-mediated YAP Y357 phosphorylation and activation. Despite the requirements of YAP in both cell types for softness induction, CTLs are more resistant to YAP inhibitors than malignant T cells, potentially due to the higher expression of the drug-resistant transporter, MDR1, in CTLs. As a result, moderate inhibition of YAP stiffens malignant T cells but spares CTLs, thus allowing CTLs to cytolyze malignant cells without autolysis. Our findings thus hint a mechanical force-based immunotherapeutic strategy against T cell leukemia.


Assuntos
Citotoxicidade Imunológica , Linfócitos T Citotóxicos , Perforina/genética , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética
12.
Research (Wash D C) ; 6: 0215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614365

RESUMO

Solid tumor cells live in a highly dynamic mechanical microenvironment. How the extracellular-matrix-generated mechanotransduction regulates tumor cell development and differentiation remains an enigma. Here, we show that a low mechanical force generated from the soft matrix induces dedifferentiation of moderately stiff tumor cells to soft stem-cell-like cells. Mechanistically, integrin ß8 was identified to transduce mechano-signaling to trigger tumor cell dedifferentiation by recruiting RhoGDI1 to inactivate RhoA and subsequently Yes-associated protein (YAP). YAP inactivation relieved the inhibition of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG), allowing MAFG to transactivate the stemness genes NANOG, SOX2, and NESTIN. Inactivation also restored ß8 expression, thereby forming a closed mechanical loop. Importantly, MAFG expression is correlated with worse prognosis. Our findings provide mechanical insights into the regulation of tumor cell dedifferentiation, which has therapeutic implications for exploring innovative strategies to attack malignancies.

13.
Sci Transl Med ; 15(681): eabq6024, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724242

RESUMO

Weak immunogenicity of tumor cells is a root cause for the ultimate failure of immunosurveillance and immunotherapy. Although tumor evolution can be shaped by immunoediting toward a less immunogenic phenotype, mechanisms governing the initial immunogenicity of primordial tumor cells or original cancer stem cells remain obscure. Here, using a single tumor-repopulating cell (TRC) to form tumors in immunodeficient or immunocompetent mice, we demonstrated that immunogenic heterogeneity is an inherent trait of tumorigenic cells defined by the activation status of signal transducer and activator of transcription 1 (STAT1) protein in the absence of immune pressure. Subsequent investigation identified that the RNA binding protein cold shock domain-containing protein E1 (CSDE1) can promote STAT1 dephosphorylation by stabilizing T cell protein tyrosine phosphatase (TCPTP). A methyltransferase SET and MYN domain-containing 3 (SMYD3) was further identified to mediate H3K4 trimethylation of CSDE1 locus, which was under the regulation of mechanotransduction by cell-matrix and cell-cell contacts. Thus, owing to the differential epigenetic modification and subsequent differential expression of CSDE1, nascent tumorigenic cells may exhibit either a high or low immunogenicity. This identified SMYD3-CSDE1 pathway represents a potential prognostic marker for cancer immunotherapy effectiveness that requires further investigation.


Assuntos
Mecanotransdução Celular , Neoplasias , Animais , Camundongos , Proteínas de Ligação a RNA/metabolismo , Epigênese Genética , Neoplasias/genética , Neoplasias/patologia , Carcinogênese/genética
14.
J Clin Invest ; 133(24)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099490

RESUMO

Elevation of reactive oxygen species (ROS) levels is a general consequence of tumor cells' response to treatment and may cause tumor cell death. Mechanisms by which tumor cells clear fatal ROS, thereby rescuing redox balance and entering a chemoresistant state, remain unclear. Here, we show that cysteine sulfenylation by ROS confers on aryl hydrocarbon receptor (AHR) the ability to dissociate from the heat shock protein 90 complex but to bind to the PPP1R3 family member PPP1R3C of the glycogen complex in drug-treated tumor cells, thus activating glycogen phosphorylase to initiate glycogenolysis and the subsequent pentose phosphate pathway, leading to NADPH production for ROS clearance and chemoresistance formation. We found that basic ROS levels were higher in chemoresistant cells than in chemosensitive cells, guaranteeing the rapid induction of AHR sulfenylation for the clearance of excess ROS. These findings reveal that AHR can act as an ROS sensor to mediate chemoresistance, thus providing a potential strategy to reverse chemoresistance in patients with cancer.


Assuntos
Glicogenólise , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
15.
Signal Transduct Target Ther ; 8(1): 22, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658134

RESUMO

Macrophages in tumors (tumor-associated macrophages, TAMs), a major population within most tumors, play key homeostatic functions by stimulating angiogenesis, enhancing tumor cell growth, and suppressing antitumor immunity. Resetting TAMs by simple, efficacious and safe approach(s) is highly desirable to enhance antitumor immunity and attenuate tumor cell malignancy. Previously, we used tumor cell-derived microparticles to package chemotherapeutic drugs (drug-MPs), which resulted in a significant treatment outcome in human malignant pleural effusions via neutrophil recruitments, implicating that drug-MPs might reset TAMs, considering the inhibitory effects of M2 macrophages on neutrophil recruitment and activation. Here, we show that drug-MPs can function as an antitumor immunomodulator by resetting TAMs with M1 phenotype and IFN-ß release. Mechanistically, drug molecules in tumor MPs activate macrophage lysosomal P450 monooxygenases, resulting in superoxide anion formation, which further amplifies lysosomal ROS production and pH value by activating lysosomal NOX2. Consequently, lysosomal Ca2+ signaling is activated, thus polarizing macrophages towards M1. Meanwhile, the drug molecules are delivered from lysosomes into the nucleus where they activate DNA sensor hnRNPA2B1 for IFN-ß production. This lysosomal-nuclear machinery fully arouses the antitumor activity of macrophages by targeting both lysosomal pH and the nuclear innate immunity. These findings highlight that drug-MPs can act as a new immunotherapeutic approach by revitalizing antitumor activity of macrophages. This mechanistic elucidation can be translated to treat malignant ascites by drug-MPs combined with PD-1 blockade.


Assuntos
Antineoplásicos , Micropartículas Derivadas de Células , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Macrófagos , Humanos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Lisossomos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo
16.
Transl Cancer Res ; 11(5): 993-1004, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35706807

RESUMO

Background: Tryptophan catabolism leading to T cell suppression mediated by indoleamine 2,3-dioxygenase (IDO1) is an important mechanism of tumor immune escape, and IDO1 inhibitors have attracted increasing attention as anticancer therapeutics. However, the phase III clinical trial (ECHO-301/KEYNOTE-252) of epacadostat (INCB024360) had disappointing outcomes. This revealed that purification of IDO1 with high purity is one of the major constraints that limit the development of its inhibitors. Methods: Pan-cancer analysis was used to elucidate the relationship between IDO1 function in tumor immunology. The recombinant pET28a-IDO1-strep plasmid and E. coli Rosetta (DE3) strain were used to express and strep-tactin beads to purify the strep-IDO1 protein. High performance liquid chromatography (HPLC) was used to detect enzymatic activity of IDO1. Ten female C57BL/6 mice was used to prepared polyclonal antibody. Enzyme linked immunosorbent assay (ELISA), Western blot, and immunofluorescence were used to measure polyclonal antibody. Results: We described an improved method for the purification of recombinant IDO1 protein based on the strep-tag using an E. coli expression system. We obtained large amount of IDO1 with enhanced purity by employing one-step purification through strep-tactin beads. The polyclonal antibody acquired immunized mice could specifically recognize both recombinant and endogenous IDO1. Conclusions: Purified human strep-IDO1 using the protocol described in our study could be used for further biochemical and structural analyses, which may facilitate functional research and further drug screening study on IDO1.

17.
Cell Mol Immunol ; 19(2): 210-221, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34983944

RESUMO

Exploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.


Assuntos
Enzima de Conversão de Angiotensina 2/administração & dosagem , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Micropartículas Derivadas de Células/metabolismo , Colesterol/metabolismo , Endossomos/química , Macrófagos Alveolares/metabolismo , SARS-CoV-2/metabolismo , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/virologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/química , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Oxirredução , Células RAW 264.7 , Resultado do Tratamento , Células Vero
18.
Nat Cell Biol ; 24(3): 364-372, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35292781

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) originates from normal pancreatic ducts where digestive juice is regularly produced. It remains unclear how PDAC can escape autodigestion by digestive enzymes. Here we show that human PDAC tumour cells use gasdermin E (GSDME), a pore-forming protein, to mediate digestive resistance. GSDME facilitates the tumour cells to express mucin 1 and mucin 13, which form a barrier to prevent chymotrypsin-mediated destruction. Inoculation of GSDME-/- PDAC cells results in subcutaneous but not orthotopic tumour formation in mice. Inhibition or knockout of mucin 1 or mucin 13 abrogates orthotopic PDAC growth in NOD-SCID mice. Mechanistically, GSDME interacts with and transports YBX1 into the nucleus where YBX1 directly promotes mucin expression. This GSDME-YBX1-mucin axis is also confirmed in patients with PDAC. These findings uncover a unique survival mechanism of PDAC cells in pancreatic microenvironments.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Proteínas Citotóxicas Formadoras de Poros , Adenocarcinoma/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mucina-1 , Mucinas , Neoplasias Pancreáticas/patologia , Proteínas Citotóxicas Formadoras de Poros/fisiologia , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box
19.
Mol Cell Oncol ; 8(2): 1882285, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33855168

RESUMO

Developing a method that can effectively define and sort cancer stem cells (CSCs) is extremely desirable. Mechanical stiffness is of paramount importance for a cell to differentiate and can reflect the differentiation state of cells. In line with this notion, cell softness is identified to be a unique marker for highly tumorigenic CSCs.

20.
Cancer Res ; 81(19): 4949-4963, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34348966

RESUMO

Hypoxia is known to be commonly present in breast tumor microenvironments. Stem-like cells that repopulate breast tumors, termed tumor-repopulating cells (TRC), thrive under hypoxic conditions, but the underlying mechanism remains unclear. Here, we show that hypoxia promotes the growth of breast TRCs through metabolic reprogramming. Hypoxia mobilized transcription factors HIF1α and FoxO1 and induced epigenetic reprogramming to upregulate cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme that initiates gluconeogenesis. PCK1 subsequently triggered retrograde carbon flow from gluconeogenesis to glycogenesis, glycogenolysis, and the pentose phosphate pathway. The resultant NADPH facilitated reduced glutathione production, leading to a moderate increase of reactive oxygen species that stimulated hypoxic breast TRC growth. Notably, this metabolic mechanism was absent in differentiated breast tumor cells. Targeting PCK1 synergized with paclitaxel to reduce the growth of triple-negative breast cancer (TNBC). These findings uncover an altered glycogen metabolic program in breast cancer, providing potential metabolic strategies to target hypoxic breast TRCs and TNBC. SIGNIFICANCE: Hypoxic breast cancer cells trigger self-growth through PCK1-mediated glycogen metabolism reprogramming that leads to NADPH production to maintain a moderate ROS level.


Assuntos
Neoplasias da Mama/metabolismo , Gluconeogênese , Glicogênio/metabolismo , Hipóxia/metabolismo , Animais , Biomarcadores , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Redes e Vias Metabólicas , Camundongos , NADP/biossíntese , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA