Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(11): 2423-2428, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866685

RESUMO

An efficient and visible light-promoted cascade N-alkylation/amidation of quinazolin-4(3H)-ones with benzyl halides and allyl halides has been described for the first time to provide a convenient access to quinazoline-2,4(1H,3H)-diones. This cascade N-alkylation/amidation reaction shows good functional group tolerance and could also be applied to N-heterocycles such as benzo[d]thiazoles, benzo[d]imidazoles, and quinazolines. Control experiments show that K2CO3 plays an important role in this transformation.

2.
Molecules ; 28(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894665

RESUMO

Selective dehydrogenative silylation is one of the most valuable tools for synthesizing organosilicon compounds. In this study, a regio- and stereoselective ruthenium-catalyzed dehydrogenative intermolecular silylation was firstly developed to access (E)-alkenyl silyl-ether derivatives and silyl-ether heterocycles with good functional group tolerance. Furthermore, two pathways for RuH2(CO)(PPh3)3/NBE-catalyzed dehydrogenative intermolecular silylation of alcohols and alkenes as well as intermolecular silylation of naphthol derivatives were investigated with H2SiEt2 as the hydrosilane reagent.

3.
Org Lett ; 25(44): 7974-7978, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37905545

RESUMO

Selective C-H annulation with alkynes is one of the most useful tools to synthesize heterocycles. Herein, we developed novel porous organic polymers supported ruthenium (POPs-Ru) as highly efficient catalysts for cascade aromatization of quinoxalin-2(1H)-one and C-H annulation with alkynes. Both terminal and internal alkynes were successfully transferred to furo[2,3-b]quinoxaline derivatives with good functional group tolerance and high regioselectivity by using POPs-Ru catalysts. Furthermore, the catalyst exhibited high activity and could be reused at least five times without obvious deactivation of this coupling reaction. This study offers an important platform for the immobilization of molecular metal catalysts for C-H functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA