Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(50): 27512-27520, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060534

RESUMO

We report that a newly developed type of triaryltriazine rotor, which bears bulky silyl moieties on the para position of its peripheral phenylene groups, forms a columnar stacked clutch structure in the crystalline phase. The phenylene units of the crystalline rotors display two different and interconvertible correlated molecular motions. It is possible to switch between these intermolecular geared rotational motions via a thermally induced crystal-to-crystal phase transition. Variable-temperature solid-state 2H NMR measurements and X-ray diffraction studies revealed that the crystalline rotor is characterized by a vertically stacked columnar structure upon introducing a bulky Si moiety with bent geometry as the stator. The structure exhibits correlated flapping motions via a combination of 85° and ca. 95° rotations between 295 and 348 K, concurrent with a negative entropy change (ΔS‡ = -23 ± 0.3 cal mol-1 K-1). Interestingly, heating the crystal beyond 348 K induces an anisotropic expansion of the column and lowers the steric congestion between the adjacent rotators, thus altering the correlated motions from a flapping motion to a correlated 2-fold 180° rotation with a lower entropic penalty (ΔS‡ = -14 ± 0.5 cal mol-1 K-1). The obtained results of our study suggest that the intermolecular stacking of the C3-symmetric rotator driven by the steric repulsion of the bulky stator represents a promising strategy for producing various correlated molecular motions in the crystalline phase. Moreover, direct and reversible modulation of the intermolecularly correlated rotation is achieved via a thermally induced crystal-to-crystal phase transition, which operates as a gearshift function at the molecular level.

2.
J Chem Phys ; 158(13): 134713, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031146

RESUMO

Electrocatalytic activities for the oxygen reduction reaction (ORR) of Au electrodes modified by as prepared and size selected (0.45-1.0, 0.22-0.45, and 0.1-0.22 µm) h-BN nanosheet (BNNS), which is an insulator, were examined in O2 saturated 0.5M H2SO4 solution. The overpotential was reduced by all the BNNS modifications, and the smaller the size, the smaller the overpotential for ORR, i.e., the larger the ORR activity, in this size range. The overpotential was reduced by as much as ∼330 mV compared to a bare Au electrode by modifying the Au surface by the BNNS of the smallest size range (0.1-0.22 µm). The overpotential at this electrode was only 80 mV more than that at the Pt electrode. Both the rotation disk electrode experiments with Koutecky-Levich analysis and rotating ring disk electrode measurements showed that more than 80% of oxygen is reduced to water via the four-electron process at this electrode. These results strongly suggest and theoretical density functional theory calculations support that the ORR active sites are located at the edges of BNNS islands adsorbed on Au(111). The decrease in size of BNNS islands results in an effective increase in the number of the catalytically active sites and, hence, in the increase in the catalytic activity of the BNNS/Au(111) system for ORR.

3.
Small ; 18(33): e2202861, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35766308

RESUMO

Reversible multielectron-transfer materials are of considerable interest because of the potential impact to advance present electrochemical energy storage technology by boosting energy density. To date, a few oxide-based materials can reach an electron-transfer number per metal-cation (eM ) larger than 2 upon a (de)intercalation mechanism. However, these materials suffer from degradation due to irreversible rearrangements of the cation-oxygen bonds, and are based on precious metals, for example, Ir and Ru. Hence, a design of the non-oxide-based reversible multielectron-transfer materials with abundant elements can provide a promising alternative. Herein, it is demonstrated that the bis(diimino)copper framework can show eM  = 3.5 with cation/anion co-redox mechanism together with a dual-ion mechanism. In this study, the role of the cation-anion interactions is unveiled by using an experiment/theory collaboration applied to a series of the model non-oxide abundant electrode systems based on different metal-nitrogen bonds. These models provide designer multielectron-transfer due to the tunable π-d conjugated electronic structures. It is found that the Cu-nitrogen bonds show a unique reversible rearrangement upon Li-intercalation, and this process responds to acquire a significant reversible multielectron-transfer. This work provides new insights into the affordable multielectron-transfer electrodes and uncovers an alternative strategy to advance the electrochemical energy storage reactions.


Assuntos
Lítio , Metais , Cobre/química , Eletrodos , Nitrogênio
4.
Phys Chem Chem Phys ; 23(18): 11015-11027, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33942044

RESUMO

The nature and structure of occupied and empty valence electronic states (molecular orbitals, MOs) of the [Ni(Salen)] molecular complex (NiO2N2C16H14) have been studied by X-ray photoemission and absorption spectroscopy combined with density functional theory (DFT) calculations. As a result, the composition of the high-lying occupied and low-lying unoccupied electronic states has been identified. In particular, the highest occupied molecular orbital (HOMO) of the complex is found to be predominantly located on the phenyl rings of the salen ligand, while the states associated with the occupied Ni 3d-derived molecular orbitals (MOs) are at higher binding energies. The lowest unoccupied molecular orbital (LUMO) is also located on the salen ligand and is formed by the 2pπ orbitals of carbon atoms in phenyl groups of the salen macrocycle. The unoccupied MOs above the LUMO reflect σ- and π-bonding between Ni and its nearest neighbours. All valence states have highly mixed character. The specific nature of the unoccupied Ni 3d-derived σ-MO is a consequence of donor-acceptor chemical bonding in [Ni(Salen)].

5.
J Phys Chem A ; 125(43): 9527-9535, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34693712

RESUMO

Isolated nickel-doped aluminum oxide cations (NiOm)(Al2O3)n(AlO)+ with m = 1-2 and n = 1-3 are investigated by infrared photodissociation (IRPD) spectroscopy in combination with density functional theory and the single-component artificial force-induced reaction method. IRPD spectra of the corresponding He-tagged cations are reported in the 400-1200 cm-1 spectral range and assigned based on a comparison to calculated harmonic IR spectra of low-energy isomers. Simulated spectra of the lowest energy structures generally match the experimental spectra, but multiple isomers may contribute to the spectra of the m = 2 series. The identified structures of the oxides (m = 1) correspond to inserting a Ni-O moiety into an Al-O bond of the corresponding (Al2O3)1-3(AlO)+ cluster, yielding either a doubly or triply coordinated Ni2+ center. The m = 2 clusters prefer similar structures in which the additional O atom either is incorporated into a peroxide unit, leaving the oxidation state of the Ni2+ atom unchanged, or forms a biradical comprising a terminal oxygen radical anion Al-O•- and a Ni3+ species. These clusters represent model systems for under-coordinated Ni sites in alumina-supported Ni catalysts and should prove helpful in disentangling the mechanism of selective oxidative dehydrogenation of alkanes by Ni-doped catalysts.

6.
Angew Chem Int Ed Engl ; 60(17): 9427-9432, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33576120

RESUMO

Cyclo-dehydrogenation is of importance to induce the planarization of molecules on noble surfaces upon annealing. In contrast to a number of successful syntheses of polycyclic aromatic hydrocarbons by forming carbon-carbon bonds, it is still rare to conduct conjugation and cleavage of carbon-nitrogen bonds in molecules. Here, we present a systematic transformation of the C-N bonds in11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane as well as three other derivatives on Au(111). With bond-resolved scanning tunneling microscopy, we discovered novel the "heterocyclic segregation" reaction of one pyrazine ring with two nitrogen atoms to form two quinoline rings with one nitrogen each. Density functional theory calculations showed that the intramolecular ring-forming and -opening of N-heterocycles are strongly affected by the initial hydrogen-substrate interaction.

7.
J Phys Chem A ; 123(1): 210-217, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30540470

RESUMO

In nanocatalysis, growing attention has recently been given to investigation of energetically low-lying structural isomers of atomic clusters, because some isomers can demonstrate better catalytic activity than the most stable structures. In this study, we present a comparative investigation of catalytic activity for NO dissociation of a pair of the energetically degenerated isomers of Cu13 cluster having C2 and C s symmetries. It is shown that although these isomers have similar structural, electronic, and optical properties, they can possess very different catalytic activities. The effect of isomerization between cluster isomers is considered using state-of-the-art automated reaction pathway search techniques such as an artificial force induced reaction (AFIR) method as a part of a global reaction route mapping (GRRM) strategy. This method allows effectively to locate a large number of possible reaction pathways and transition states (TSs). In total, 12 TSs for NO dissociation were obtained for Cu13, of C2, C s, as well as I h isomers. Sparse modeling analysis shows that LUMO is strongly negatively correlated with total energy of TSs. For most TSs, LUMO has the antibonding character of NO, consisting of the interaction between π* of NO and SOMO of Cu13. Therefore, an increase in the strength of interaction between NO molecule and Cu13 cluster causes the rise in energy of the LUMO, resulting in lowering of the TS energy for NO dissociation. The combination of the automated reaction pathway search technique and sparse modeling represents a powerful tool for analysis and prediction of the physicochemical properties of atomic clusters, especially in the regime of structural fluxionality, where traditional methods based on random geometry search analyses are difficult.

8.
Phys Rev Lett ; 121(23): 236001, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30576195

RESUMO

We report an observation of a quantum tunneling effect in a proton-transfer (PT) during potential-induced transformation of dioxygen on a platinum electrode in a low overpotential (η) region at 298 K. However, this quantum process is converted to the classical PT scheme in the high η region. Therefore, there is a quantum-to-classical transition of the PT (QCT-PT) process as a function of the potential, which is confirmed by theoretical analysis. This observation indicates that the quantum tunneling governs the multistep electron-proton-driven transformation of dioxygen in the low η condition.

9.
Phys Chem Chem Phys ; 19(34): 23154-23161, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28820203

RESUMO

The mechanism of dissociative D2 adsorption on Ti2O4-, which serves as a model for an oxygen vacancy on a titania surface, is studied using infrared photodissociation spectroscopy in combination with density functional theory calculations and a recently developed single-component artificial force induced reaction method. Ti2O4- readily reacts with D2 under multiple collision conditions in a gas-filled ion trap held at 16 K forming a global minimum-energy structure (DO-Ti-(O)2-Ti(D)-O)-. The highly exergonic reaction proceeds quasi barrier-free via several intermediate species, involving heterolytic D2-bond cleavage followed by D-atom migration. We show that, compared to neutral Ti2O4, the excess negative charge in Ti2O4- is responsible for the substantial lowering of the D2 dissociation barrier, but does not affect the molecular D2 adsorption energy in the initial physisorption step.

10.
Chem Rec ; 16(5): 2324-2337, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27470703

RESUMO

In this Personal Account, we review the work of our group in the area of environmental and energy-related nanocatalysis over the past seven years. We focus on understanding the fundamental mechanisms that control the properties of atomic clusters and nanoparticles - a form of matter that is intermediate between atoms and their bulk counterpart. The emphasis is on the theoretical design of effective catalysts based on cheap and abundant elements. The main idea that stands behind our work is that even catalytically inactive or completely inert materials can be functionalized at the nanoscale via the size, structure, morphology, and support effects. Such an approach opens up new ways to design catalytically active systems based on materials never before considered as catalysts. In particular, we demonstrate that hexagonal boron nitride (h-BN), which has been traditionally considered an inert material, can be functionalized and become active for a number of catalytic reactions involving oxygen activation, oxidation by molecular oxygen, and the oxygen reduction reaction.

11.
J Am Chem Soc ; 136(18): 6542-5, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24773085

RESUMO

Boron nitride (BN), which is an insulator with a wide band gap, supported on Au is theoretically suggested and experimentally proved to act as an electrocatalyst for oxygen reduction reaction (ORR). Density-functional theory calculations show that the band gap of a free h-BN monolayer is 4.6 eV but a slight protrusion of the unoccupied BN states toward the Fermi level is observed if BN is supported on Au(111) due to the BN-Au interaction. A theoretically predicted metastable configuration of O2 on h-BN/Au(111), which can serve as precursors for ORR, and free energy diagrams for ORR on h-BN/Au(111) via two- and four-electron pathways show that ORR to H2O2 is possible at this electrode. It is experimentally proved that overpotential for ORR at the gold electrode is significantly reduced by depositing BN nanosheets. No such effect is observed at the glassy carbon electrode, demonstrating the importance of BN-substrate interaction for h-BN to act as the ORR electrocatalyst. A possible role of the edge of the BN islands for ORR is also discussed.

12.
Nat Commun ; 15(1): 882, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287031

RESUMO

Molecular passivation is a prominent approach for improving the performance and operation stability of halide perovskite solar cells (HPSCs). Herein, we reveal discernible effects of diammonium molecules with either an aryl or alkyl core onto Methylammonium-free perovskites. Piperazine dihydriodide (PZDI), characterized by an alkyl core-electron cloud-rich-NH terminal, proves effective in mitigating surface and bulk defects and modifying surface chemistry or interfacial energy band, ultimately leading to improved carrier extraction. Benefiting from superior PZDI passivation, the device achieves an impressive efficiency of 23.17% (area ~1 cm2) (low open circuit voltage deficit ~0.327 V) along with superior operational stability. We achieve a certified efficiency of ~21.47% (area ~1.024 cm2) for inverted HPSC. PZDI strengthens adhesion to the perovskite via -NH2I and Mulliken charge distribution. Device analysis corroborates that stronger bonding interaction attenuates the defect densities and suppresses ion migration. This work underscores the crucial role of bifunctional molecules with stronger surface adsorption in defect mitigation, setting the stage for the design of charge-regulated molecular passivation to enhance the performance and stability of HPSC.

13.
Phys Chem Chem Phys ; 15(8): 2809-20, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23338859

RESUMO

The catalytic activity for the oxygen reduction reaction (ORR) of both the pristine and defect-possessing hexagonal boron nitride (h-BN) monolayer and H-terminated nanoribbon have been studied theoretically using density functional theory. It is demonstrated that an inert h-BN monolayer can be functionalized and become catalytically active by nitrogen doping. It is shown that the energetics of adsorption of O(2), O, OH, OOH, and H(2)O on N atom impurities in the h-BN monolayer (N(B)@h-BN) is quite similar to that known for a Pt(111) surface. The specific mechanism of destructive and cooperative adsorption of ORR intermediates on the surface point defects is discussed. It is demonstrated that accounting for entropy and zero-point energy (ZPE) corrections results in destabilization of the ORR intermediates adsorbed on N(B)@h-BN, while solvent effects lead to their stabilization. Therefore, entropy, ZPE and solvent effects partly cancel each other and have to be taken into account simultaneously. Analysis of the free energy changes along the ORR pathway allows us to suggest that a N-doped h-BN monolayer can demonstrate catalytic properties for the ORR under the condition that electron transport to the catalytically active center is provided.

14.
J Chem Phys ; 138(3): 034701, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23343287

RESUMO

The mechanism of CO oxidation by O(2) on Au atoms supported on the pristine and defected hexagonal boron nitride (h-BN) surface has been studied theoretically using density functional theory. It is found that O(2) binds stronger than CO on an Au atom supported on the defect free h-BN surface and h-BN surface with nitrogen vacancy (V(N)@h-BN), but weaker than CO on a free Au atom or Au trapped by a boron vacancy (V(B)@h-BN). The excess of the positive or negative charge on Au can considerably change its catalytic properties and enhance activation of the adsorbed O(2). Coadsorption of CO and O(2) on Au, Au/V(N)@h-BN, and Au/V(B)@h-BN results in additional charge transfer to O(2). Various pathways of the CO oxidation reaction by molecular oxygen are studied. We found two different pathways for CO oxidation: a two-step pathway where two CO(2) molecules are formed independently, and a self-promotion pathway where oxidation of the first CO molecule is promoted by the second CO molecule. Interaction of Au with the defect-free and defected h-BN surface considerably affects the CO oxidation reaction pathways and barriers. Therefore, Au supported on the h-BN surface (pristine or defected) cannot be considered as pseudo-free atom and support effects have to be taken into account, even when the interaction of Au with the support is weak.


Assuntos
Compostos de Boro/química , Dióxido de Carbono/síntese química , Monóxido de Carbono/química , Ouro/química , Oxigênio/química , Dióxido de Carbono/química , Oxirredução , Teoria Quântica
15.
ACS Nano ; 17(23): 24355-24362, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38047624

RESUMO

A metal-metal bond between coordination complexes has the nature of a covalent bond in hydrocarbons. While bimetallic and trimetallic compounds usually have three-dimensional structures in solution, the high directionality and robustness of the bond can be applied for on-surface syntheses. Here, we present a systematic formation of complex organometallic oligomers on Cu(111) through sequential ring opening of 11,11,12,12-tetraphenyl-1,4,5,8-tetraazaanthraquinodimethane and bonding of phenanthroline derivatives by multiple Cu atoms. A detailed characterization with a combination of scanning tunneling microscopy and density functional theory calculations revealed the role of the Cu adatoms in both enantiomers of the chiral oligomers. Furthermore, we found sufficient strength of the bonds against sliding friction by manipulating the oligomers up to a hexamer. This finding may help to increase the variety of organometallic nanostructures on surfaces.

16.
ACS Nano ; 15(9): 15153-15165, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34460239

RESUMO

A great variety of two-dimensional (2D) boron allotropes (borophenes) were extensively studied in the past decade in the quest for graphene-like materials with potential for advanced technological applications. Among them, the 2D honeycomb boron is of specific interest as a structural analogue of graphene. Recently it has been synthesized on the Al(111) substrate; however it remains unknown to what extent does honeycomb boron behave like graphene. Here we elucidate the structural and electronic properties of this unusual 2D material with a combination of core-level X-ray spectroscopies, scanning tunneling microscopy, and DFT calculations. We demonstrate that in contrast to graphene on lattice-mismatched metal surfaces, honeycomb boron cannot wiggle like a blanket on Al(111), but rather induces reconstruction of the top metal layer, forming a stoichiometric AlB2 sheet on top of Al. Our conclusions from theoretical modeling are fully supported by X-ray absorption spectra showing strong similarity in the electronic structure of honeycomb boron on Al(111) and thick AlB2 films. On the other hand, a clear separation of the electronic states of the honeycomb boron into π- and σ-subsystems indicates an essentially 2D nature of the electronic system in both one-layer AlB2 and bulk AlB2.

17.
ACS Nano ; 13(12): 14511-14518, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31790188

RESUMO

Artificial two-dimensional (2D) materials, which host electronic or spatial structure and properties not typical for their bulk allotropes, can be grown epitaxially on atomically flat surfaces; the design and investigation of these materials are thus at the forefront of current research. Here we report the formation of borophene, a planar boron allotrope, on the surface of Ir(111) by exposing it to the flux of elemental boron and consequent annealing. By means of scanning tunneling microscopy and density functional theory calculations, we reveal the complex structure of this borophene, different from all planar boron allotropes reported earlier. This structure forms as a single phase on iridium substrate in a wide range of experimental conditions and may be then decoupled from the substrate via intercalation. These findings allow for production of large, defect-free borophene sheets and advance theoretical understanding of polymorphism in borophene.

18.
ACS Nano ; 11(2): 1770-1779, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28135413

RESUMO

The material choice for efficient electrocatalysts is limited because it is necessary to be highly active as well as highly stable. One direction to solve this issue is to understand elementary steps of electrode processes and build an unconventional strategy for a conversion of inert and, therefore, stable materials into efficient catalysts. Herein, we propose a simple concept for obtaining catalysts from inert and hence stable materials by forming their heterojunctions, namely, covering inert Au with corrugated carbon-nitrogen-based two-dimensional porous frameworks. It shows more than 10 times better activity for the hydrogen evolution reaction than for the pure Au surface, and it also demonstrates the high catalytic activity for the oxygen reduction reaction (ORR) via an effective four-electron reduction mechanism, which is different from the usual two-electron reduction typical for ORR on Au surfaces. This activity induced by formation of a heterojunction was analyzed by a conjugation of computational and experimental methods and found to originate from alternative efficient reaction pathways that emerged by the corrugated porous framework and the Au surface. This work provides not only the method for creating active surface but also the knowledge on elementary steps of such complicated multielectron transfer reactions, thereby leading to intriguing strategies for developing energy conversion reactions based on materials which had never been considered as catalysts before.

19.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27874217

RESUMO

Outstanding protection of Cu by high-quality boron nitride nanofilm (BNNF) 1-2 atomic layers thick in salt water is observed, while defective BNNF accelerates the reaction of Cu toward water. The chemical stability, insulating nature, and impermeability of ions through the BN hexagons render BNNF a great choice for atomic-scale protection.

20.
Sci Rep ; 6: 32217, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558958

RESUMO

It is demonstrated that electrochemical hydrogen evolution reaction (HER) proceeds very efficiently at Au electrode, an inert substrate for HER, modified with BNNS, an insulator. This combination has been reported to be an efficient electrocatalyst for oxygen reduction reaction. Higher efficiency is achieved by using the size controlled BNNS (<1 µm) for the modification and the highest efficiency is achieved at Au electrode modified with the smallest BNNS (0.1-0.22 µm) used in this study where overpotentials are only 30 mV and 40 mV larger than those at Pt electrode, which is known to be the best electrode for HER, at 5 mAcm(-2) and at 15 mAcm(-2), respectively. Theoretical evaluation suggests that some of edge atoms provide energetically favored sites for adsorbed hydrogen, i.e., the intermediate state of HER. This study opens a new route to develop HER electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA