RESUMO
Symbiotic bacteria often navigate complex environments before colonizing privileged sites in their host organism. Chemical gradients are known to facilitate directional taxis of these bacteria, guiding them toward their eventual destination. However, less is known about the role of physical features in shaping the path the bacteria take and defining how they traverse a given space. The flagellated marine bacterium Vibrio fischeri, which forms a binary symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, must navigate tight physical confinement during colonization, squeezing through a tissue bottleneck constricting to â¼2 µm in width on the way to its eventual home. Using microfluidic in vitro experiments, we discovered that V. fischeri cells alter their behavior upon entry into confined space, straightening their swimming paths and promoting escape from confinement. Using a computational model, we attributed this escape response to two factors: reduced directional fluctuation and a refractory period between reversals. Additional experiments in asymmetric capillary tubes confirmed that V. fischeri quickly escape from confined ends, even when drawn into the ends by chemoattraction. This avoidance was apparent down to a limit of confinement approaching the diameter of the cell itself, resulting in a balance between chemoattraction and evasion of physical confinement. Our findings demonstrate that nontrivial distributions of swimming bacteria can emerge from simple physical gradients in the level of confinement. Tight spaces may serve as an additional, crucial cue for bacteria while they navigate complex environments to enter specific habitats.
Assuntos
Espaços Confinados , Natação , Aliivibrio fischeri/fisiologia , Animais , Decapodiformes/microbiologia , Decapodiformes/fisiologia , Simbiose/fisiologiaRESUMO
Extracellular bacterial symbionts communicate biochemically with their hosts to establish niches that foster the partnership. Using quantitative ion microprobe isotopic imaging (nanoscale secondary ion mass spectrometry [NanoSIMS]), we surveyed localization of 15 N-labelled molecules produced by the bacterium Vibrio fischeri within the cells of the symbiotic organ of its host, the Hawaiian bobtail squid, and compared that with either labelled non-specific species or amino acids. In all cases, two areas of the organ's epithelia were significantly more 15 N enriched: (a) surface ciliated cells, where environmental symbionts are recruited, and (b) the organ's crypts, where the symbiont population resides in the host. Label enrichment in all cases was strongest inside host cell nuclei, preferentially in the euchromatin regions and the nucleoli. This permissiveness demonstrated that uptake of biomolecules is a general mechanism of the epithelia, but the specific responses to V. fischeri cells recruited to the organ's surface are due to some property exclusive to this species. Similarly, in the organ's deeper crypts, the host responds to common bacterial products that only the specific symbiont can present in that location. The application of NanoSIMS allows the discovery of such distinct modes of downstream signalling dependent on location within the host and provides a unique opportunity to study the microbiogeographical patterns of symbiotic dialogue.
Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/microbiologia , Microscopia Eletrônica , Transdução de Sinais , Espectrometria de Massa de Íon Secundário , Simbiose , Aliivibrio fischeri/ultraestrutura , Animais , Interações entre Hospedeiro e MicrorganismosRESUMO
Environmental pH can be an important cue for symbiotic bacteria as they colonize their eukaryotic hosts. Using the model mutualism between the marine bacterium Vibrio fischeri and the Hawaiian bobtail squid, we characterized the bacterial transcriptional response to acidic pH experienced during the shift from planktonic to host-associated lifestyles. We found several genes involved in outer membrane structure were differentially expressed based on pH, indicating alterations in membrane physiology as V. fischeri initiates its symbiotic program. Exposure to host-like pH increased the resistance of V. fischeri to the cationic antimicrobial peptide polymixin B, which resembles antibacterial molecules that are produced by the squid to select V. fischeri from the ocean microbiota. Using a forward genetic screen, we identified a homolog of eptA, a predicted phosphoethanolamine transferase, as critical for antimicrobial defense. We used MALDI-MS to verify eptA as an ethanolamine transferase for the lipid-A portion of V. fischeri lipopolysaccharide. We then used a DNA pulldown approach to discover that eptA transcription is activated by the global regulator H-NS. Finally, we revealed that eptA promotes successful squid colonization by V. fischeri, supporting its potential role in initiation of this highly specific symbiosis.
Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Lipopolissacarídeos/metabolismo , Simbiose/fisiologia , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Animais , Decapodiformes/metabolismo , Decapodiformes/microbiologia , Concentração de Íons de HidrogênioRESUMO
Outer membrane vesicles (OMVs) are continuously produced by Gram-negative bacteria and are increasingly recognized as ubiquitous mediators of bacterial physiology. In particular, OMVs are powerful effectors in interorganismal interactions, driven largely by their molecular contents. These impacts have been studied extensively in bacterial pathogenesis but have not been well documented within the context of mutualism. Here, we examined the proteomic composition of OMVs from the marine bacterium Vibrio fischeri, which forms a specific mutualism with the Hawaiian bobtail squid, Euprymna scolopes We found that V. fischeri upregulates transcription of its major outer membrane protein, OmpU, during growth at an acidic pH, which V. fischeri experiences when it transitions from its environmental reservoir to host tissues. We used comparative genomics and DNA pulldown analyses to search for regulators of ompU and found that differential expression of ompU is governed by the OmpR, H-NS, and ToxR proteins. This transcriptional control combines with nutritional conditions to govern OmpU levels in OMVs. Under a host-encountered acidic pH, V. fischeri OMVs become more potent stimulators of symbiotic host development in an OmpU-dependent manner. Finally, we found that symbiotic development could be stimulated by OMVs containing a homolog of OmpU from the pathogenic species Vibrio cholerae, connecting the role of a well-described virulence factor with a mutualistic element. This work explores the symbiotic effects of OMV variation, identifies regulatory machinery shared between pathogenic and mutualistic bacteria, and provides evidence of the role that OMVs play in animal-bacterium mutualism.IMPORTANCE Beneficial bacteria communicate with their hosts through a variety of means. These communications are often carried out by a combination of molecules that stimulate responses from the host and are necessary for development of the relationship between these organisms. Naturally produced bacterial outer membrane vesicles (OMVs) contain many of those molecules and can stimulate a wide range of responses from recipient organisms. Here, we describe how a marine bacterium, Vibrio fischeri, changes the makeup of its OMVs under conditions that it experiences as it goes from its free-living lifestyle to associating with its natural host, the Hawaiian bobtail squid. This work improves our understanding of how bacteria change their signaling profile as they begin to associate with their beneficial partner animals.
Assuntos
Aliivibrio fischeri/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Decapodiformes/microbiologia , Vesículas Extracelulares/metabolismo , Proteômica/métodos , Aliivibrio fischeri/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Regulação Bacteriana da Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Concentração de Íons de Hidrogênio , Simbiose , Regulação para CimaRESUMO
The human intestine, colonized by a dense community of resident microbes, is a frequent target of bacterial pathogens. Undisturbed, this intestinal microbiota provides protection from bacterial infections. Conversely, disruption of the microbiota with oral antibiotics often precedes the emergence of several enteric pathogens. How pathogens capitalize upon the failure of microbiota-afforded protection is largely unknown. Here we show that two antibiotic-associated pathogens, Salmonella enterica serovar Typhimurium (S. typhimurium) and Clostridium difficile, use a common strategy of catabolizing microbiota-liberated mucosal carbohydrates during their expansion within the gut. S. typhimurium accesses fucose and sialic acid within the lumen of the gut in a microbiota-dependent manner, and genetic ablation of the respective catabolic pathways reduces its competitiveness in vivo. Similarly, C. difficile expansion is aided by microbiota-induced elevation of sialic acid levels in vivo. Colonization of gnotobiotic mice with a sialidase-deficient mutant of Bacteroides thetaiotaomicron, a model gut symbiont, reduces free sialic acid levels resulting in C. difficile downregulating its sialic acid catabolic pathway and exhibiting impaired expansion. These effects are reversed by exogenous dietary administration of free sialic acid. Furthermore, antibiotic treatment of conventional mice induces a spike in free sialic acid and mutants of both Salmonella and C. difficile that are unable to catabolize sialic acid exhibit impaired expansion. These data show that antibiotic-induced disruption of the resident microbiota and subsequent alteration in mucosal carbohydrate availability are exploited by these two distantly related enteric pathogens in a similar manner. This insight suggests new therapeutic approaches for preventing diseases caused by antibiotic-associated pathogens.
Assuntos
Antibacterianos/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Clostridioides difficile/fisiologia , Enterocolite Pseudomembranosa/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia , Animais , Bacteroides/fisiologia , Feminino , Fucose/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mucosa Intestinal/metabolismo , Masculino , Metagenoma/efeitos dos fármacos , Metagenoma/fisiologia , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Organismos Livres de Patógenos EspecíficosRESUMO
Outer membrane vesicles (OMVs) are proteoliposome nanoparticles ubiquitously produced by Gram-negative bacteria. Typically bearing a composition similar to those of the outer membrane and periplasm of the cells from which they are derived, OMVs package an array of proteins, lipids, and nucleic acids. Once considered inconsequential by-products of bacterial growth, OMVs have since been demonstrated to mediate cellular stress relief, promote horizontal gene transfer and antimicrobial activity, and elicit metazoan inflammation. Recently, OMVs have gained appreciation as critical moderators of interorganismal dynamics. In this review, we focus on recent progress toward understanding the functions of OMVs with regard to symbiosis and ecological contexts, and we propose potential avenues for future OMV studies.
Assuntos
Bactérias Gram-Negativas/fisiologia , Vesículas Secretórias/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Metabolismo dos Lipídeos , Ácidos Nucleicos/metabolismo , SimbioseRESUMO
UNLABELLED: Using the squid-vibrio association, we aimed to characterize the mechanism through which Vibrio fischeri cells signal morphogenesis of the symbiotic light-emitting organ. The symbiont releases two cell envelope molecules, peptidoglycan (PG) and lipopolysaccharide (LPS) that, within 12 h of light organ colonization, act in synergy to trigger normal tissue development. Recent work has shown that outer membrane vesicles (OMVs) produced by V. fischeri are sufficient to induce PG-dependent morphogenesis; however, the mechanism(s) of OMV release by these bacteria has not been described. Like several genera of both beneficial and pathogenic bacteria, V. fischeri cells elaborate polar flagella that are enclosed by an extension of the outer membrane, whose function remains unclear. Here, we present evidence that along with the well-recognized phenomenon of blebbing from the cell's surface, rotation of this sheathed flagellum also results in the release of OMVs. In addition, we demonstrate that most of the development-inducing LPS is associated with these OMVs and that the presence of the outer membrane protein OmpU but not the LPS O antigen on these OMVs is important in triggering normal host development. These results also present insights into a possible new mechanism of LPS release by pathogens with sheathed flagella. IMPORTANCE: Determining the function(s) of sheathed flagella in bacteria has been challenging, because no known mutation results only in the loss of this outer membrane-derived casing. Nevertheless, the presence of a sheathed flagellum in such host-associated genera as Vibrio, Helicobacter, and Brucella has led to several proposed functions, including physical protection of the flagella and masking of their immunogenic flagellins. Using the squid-vibrio light organ symbiosis, we demonstrate another role, that of V. fischeri cells require rotating flagella to induce apoptotic cell death within surface epithelium, which is a normal step in the organ's development. Further, we present evidence that this rotation releases apoptosis-triggering lipopolysaccharide in the form of outer membrane vesicles. Such release may also occur by pathogens but with different outcomes for the host.
Assuntos
Aliivibrio fischeri/fisiologia , Vesículas Extracelulares , Flagelos/fisiologia , Membrana Celular , Lipopolissacarídeos , RotaçãoRESUMO
The gut microbiota interacts directly with dietary nutrients and has the ability to modify host feeding behavior, but the underlying mechanisms remain poorly understood. Select gut bacteria digest complex carbohydrates that are non-digestible by the host and liberate metabolites that serve as additional energy sources and pleiotropic signaling molecules. Here we use a gnotobiotic mouse model to examine how differential fructose polysaccharide metabolism by commensal gut bacteria influences host preference for diets containing these carbohydrates. Bacteroides thetaiotaomicron and Bacteroides ovatus selectively ferment fructans with different glycosidic linkages: B. thetaiotaomicron ferments levan with ß2-6 linkages, whereas B. ovatus ferments inulin with ß2-1 linkages. Since inulin and levan are both fructose polymers, inulin and levan diet have similar perceptual salience to mice. We find that mice colonized with B. thetaiotaomicron prefer the non-fermentable inulin diet, while mice colonized with B. ovatus prefer the non-fermentable levan diet. Knockout of bacterial fructan utilization genes abrogates this preference, whereas swapping the fermentation ability of B. thetaiotaomicron to inulin confers host preference for the levan diet. Bacterial fructan fermentation and host behavioral preference for the non-fermentable fructan are associated with increased neuronal activation in the arcuate nucleus of the hypothalamus, a key brain region for appetite regulation. These results reveal that selective nutrient metabolism by gut bacteria contributes to host associative learning of dietary preference, and further informs fundamental understanding of the biological determinants of food choice.
RESUMO
Bacteroides is a dominant genus within the intestinal microbiota of healthy humans. Key adaptations of the Bacteroides to the dynamic intestinal ecosystem include a diverse repertoire of genes involved in sensing and processing numerous diet- and host-derived polysaccharides. One such adaptation is the carbohydrate-sensing hybrid two-component system (HTCS) family of signalling sensors, which has been widely expanded within the Bacteroides. Using Bacteroides thetaiotaomicron as a model, we have created a chimeric HTCS consisting of the well-characterized sensing domain of one HTCS, BT1754, and the regulatory domain of another HTCS, BT0366, to explore the regulatory capabilities of these molecules. We found that the BT0366 regulatory region directly binds to and mediates induction of the adjacent polysaccharide utilization locus (PUL) using whole-genome transcriptional profiling after inducing signalling through our chimeric protein. We also found that BT0366 activation simultaneously leads to repression of distal PULs involved in mucus carbohydrate consumption. These results suggest a novel mechanism by which an HTCS enforces a nutrient hierarchy within the Bacteroides via induction and repression of multiple PULs. Thus, hybrid two-component systems provide a mechanism for prioritizing consumption of carbohydrates through simultaneous binding and regulation of multiple polysaccharide utilization loci.
Assuntos
Bacteroides/genética , Bacteroides/metabolismo , Quimera/genética , Muco/química , Gomas Vegetais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Carboidratos , Carboidratos da Dieta/metabolismo , Frutose/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Humanos , Polissacarídeos/metabolismo , Ativação TranscricionalRESUMO
The gut microbiota modulates neurobiological activity in various animal lineages. This is often proposed to occur through interactions with neurotransmitters and other neuromodulatory molecules in the host. Our commentary will discuss recent research that establishes microbiota-neurotransmitter connections, gaps in current understanding, and outstanding questions that may guide future advances in the field of microbiota-nervous system interactions.
Assuntos
Encéfalo , Microbioma Gastrointestinal , Animais , Encéfalo/fisiologia , Sistema Nervoso , Microbioma Gastrointestinal/fisiologia , NeurotransmissoresRESUMO
Bacteria from the Turicibacter genus are prominent members of the mammalian gut microbiota and correlate with alterations in dietary fat and body weight, but the specific connections between these symbionts and host physiology are poorly understood. To address this knowledge gap, we characterize a diverse set of mouse- and human-derived Turicibacter isolates, and find they group into clades that differ in their transformations of specific bile acids. We identify Turicibacter bile salt hydrolases that confer strain-specific differences in bile deconjugation. Using male and female gnotobiotic mice, we find colonization with individual Turicibacter strains leads to changes in host bile acid profiles, generally aligning with those produced in vitro. Further, colonizing mice with another bacterium exogenously expressing bile-modifying genes from Turicibacter strains decreases serum cholesterol, triglycerides, and adipose tissue mass. This identifies genes that enable Turicibacter strains to modify host bile acids and lipid metabolism, and positions Turicibacter bacteria as modulators of host fat biology.
Assuntos
Microbioma Gastrointestinal , Tenericutes , Masculino , Humanos , Feminino , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/fisiologia , Gorduras na Dieta/metabolismo , Bile , Bactérias/genética , MamíferosRESUMO
Bacteriophages (phages) are diverse and abundant constituents of microbial communities worldwide, capable of modulating bacterial populations in diverse ways. Here, we describe the phage HNL01, which infects the marine bacterium Vibrio fischeri. We use culture-based approaches to demonstrate that mutations in the exopolysaccharide locus of V. fischeri render this bacterium resistant to infection by HNL01, highlighting the extracellular matrix as a key determinant of HNL01 infection. Additionally, using the natural symbiosis between V. fischeri and the squid Euprymna scolopes, we show that, during colonization, V. fischeri is protected from phages present in the ambient seawater. Taken together, these findings shed light on independent yet synergistic host- and bacterium-based strategies for resisting symbiosis-disrupting phage predation, and we present important implications for understanding these strategies in the context of diverse host-associated microbial ecosystems.
Assuntos
Bacteriófagos/fisiologia , Decapodiformes/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Modelos Biológicos , Simbiose/fisiologia , Aliivibrio fischeri/virologia , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/ultraestrutura , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Mutação/genética , Plâncton/metabolismoRESUMO
Reduced gravity, or microgravity, can have a pronounced impact on the physiology of animals, but the effects on their associated microbiomes are not well understood. Here, the impact of modeled microgravity on the shedding of Gram-negative lipopolysaccharides (LPS) by the symbiotic bacterium Vibrio fischeri was examined using high-aspect ratio vessels. LPS from V. fischeri is known to induce developmental apoptosis within its symbiotic tissues, which is accelerated under modeled microgravity conditions. In this study, we provide evidence that exposure to modeled microgravity increases the amount of LPS released by the bacterial symbiont in vitro. The higher rates of shedding under modeled microgravity conditions are associated with increased production of outer-membrane vesicles (OMV), which has been previously correlated to flagellar motility. Mutants of V. fischeri defective in the production and rotation of their flagella show significant decreases in LPS shedding in all treatments, but levels of LPS are higher under modeled microgravity despite loss of motility. Modeled microgravity also appears to affect the outer-membrane integrity of V. fischeri, as cells incubated under modeled microgravity conditions are more susceptible to cell-membrane-disrupting agents. These results suggest that, like their animal hosts, the physiology of symbiotic microbes can be altered under microgravity-like conditions, which may have important implications for host health during spaceflight.
RESUMO
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.