Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuromodulation ; 26(4): 829-839, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35410769

RESUMO

OBJECTIVES: Complex walking in older adults can be improved with task practice and might be further enhanced by pairing transcranial direct current stimulation (tDCS) to the dorsolateral prefrontal cortex. We tested the hypothesis that a single session of practice of a complex obstacle negotiation task paired with active tDCS in older adults would produce greater within-session improvements in walking performance and retention of gains, compared to sham tDCS and no tDCS conditions. MATERIALS AND METHODS: A total of 50 older adults (mean age = 74.46 years ± 6.49) with self-reported walking difficulty were randomized to receive either active tDCS (active-tDCS group) or sham tDCS (sham-tDCS group) bilaterally to the dorsolateral prefrontal cortex or no tDCS (no-tDCS group). Each group performed ten practice trials of an obstacle negotiation task at their fastest safe speed. Retention of gains in walking performance was assessed with three trials conducted one week later. Within-session effects of practice and between-session retention effects on obstacle negotiation speed were examined. RESULTS: At the practice session, all three groups exhibited significant within-session gains in walking speed (p ≤ 0.005). However, the gains were significantly greater in the sham-tDCS group than in the active-tDCS and no-tDCS groups (p ≤ 0.03) and were comparable between the active-tDCS and no-tDCS groups (p = 0.89). At one-week follow-up, the active-tDCS group exhibited significant between-session retention of gains and continued "offline" improvement in walking speed (p = 0.005). The active-tDCS group showed significantly greater retention of gains than the no-tDCS (p = 0.02) but not the sham-tDCS group (p = 0.24). CONCLUSIONS: Pairing prefrontal active tDCS with a single session of obstacle negotiation practice may enhance one-week retention of gains in walking performance compared to no tDCS. However, the evidence is insufficient to suggest a benefit of active tDCS over sham tDCS for enhancing the gains in walking performance. Additional studies with a multisession intervention design and larger sample size are needed to further investigate these findings. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03122236.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Negociação , Caminhada , Córtex Pré-Frontal/fisiologia , Método Duplo-Cego
2.
Pain Med ; 22(8): 1776-1783, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-33718961

RESUMO

OBJECTIVE: The present study aimed to determine whether specific cognitive domains part of the Montreal Cognitive Assessment (MoCA) are significantly lower in community-dwelling older adults with chronic pain compared with older adults without pain and whether these domains would be associated with self-reported pain, disability, and somatosensory function. DESIGN: Secondary data analysis, cross-sectional. SETTING: University of Florida. SUBJECTS: Individuals over 60 years old enrolled in the Neuromodulatory Examination of Pain and mobility Across the Lifespan (NEPAL) study were included if they completed the MoCA and other study measures (n = 62). Most participants reported pain on most days during the past three months (63%). METHODS: Subjects underwent a health assessment (HAS) and a quantitative sensory testing (QST) session. Health/medical history, cognitive function and self-reported pain measures were administered during the HAS. Mechanical and thermal detection, and thermal pain thresholds were assessed during the QST session. RESULTS: Older adults with chronic pain had lower MoCA scores compared with controls on domains of executive function, attention, memory, and language (P < 0.05). The attention and language domains survived adjustments for age, sex, education, depression, and pain duration (P < 0.05). Attention was significantly associated with all pain characteristics including pain intensity and disability, while executive function was associated with mechanical detection (P < 0.05). CONCLUSION: Our results support previous findings that individuals with chronic pain tend to show poorer cognitive functioning compared with pain-free controls in domains of attention and executive function. Our findings also extend these findings to community-dwelling older adults, who are already most vulnerable to age-related cognitive declines.


Assuntos
Envelhecimento , Dor Crônica , Idoso , Dor Crônica/diagnóstico , Cognição , Estudos Transversais , Humanos , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Testes Neuropsicológicos
3.
Neuromodulation ; 24(5): 950-959, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32808403

RESUMO

OBJECTIVES: This pilot study assessed whether frontal lobe transcranial direct current stimulation (tDCS) combined with complex walking rehabilitation is feasible, safe, and shows preliminary efficacy for improving walking and executive function. MATERIALS AND METHODS: Participants were randomized to one of the following 18-session interventions: active tDCS and rehabilitation with complex walking tasks (Active/Complex); sham tDCS and rehabilitation with complex walking tasks (Sham/Complex); or sham tDCS and rehabilitation with typical walking (Sham/Typical). Active tDCS was delivered over F3 (cathode) and F4 (anode) scalp locations for 20 min at 2 mA intensity. Outcome measures included tests of walking function, executive function, and prefrontal activity measured by functional near infrared spectroscopy. RESULTS: Ninety percent of participants completed the intervention protocol successfully. tDCS side effects of tingling or burning sensations were low (average rating less than two out of 10). All groups demonstrated gains in walking performance based on within-group effect sizes (d ≥ 0.50) for one or more assessments. The Sham/Typical group showed the greatest gains for walking based on between-group effect sizes. For executive function, the Active/Complex group showed the greatest gains based on moderate to large between-group effect sizes (d = 0.52-1.11). Functional near-infrared spectroscopy (fNIRS) findings suggest improved prefrontal cortical activity during walking. CONCLUSIONS: Eighteen sessions of walking rehabilitation combined with tDCS is a feasible and safe intervention for older adults. Preliminary effects size data indicate a potential improvement in executive function by adding frontal tDCS to walking rehabilitation. This study justifies future larger clinical trials to better understand the benefits of combining tDCS with walking rehabilitation.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Idoso , Método Duplo-Cego , Função Executiva , Humanos , Projetos Piloto , Córtex Pré-Frontal , Caminhada
4.
Clin J Pain ; 38(7): 451-458, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35656805

RESUMO

OBJECTIVES: Pain sensitivity and the brain structure are critical in modulating pain and may contribute to the maintenance of pain in older adults. However, a paucity of evidence exists investigating the link between pain sensitivity and brain morphometry in older adults. The purpose of the study was to identify pain sensitivity profiles in healthy, community-dwelling older adults using a multimodal quantitative sensory testing protocol and to differentiate profiles based on brain morphometry. MATERIALS AND METHODS: This study was a secondary analysis of the Neuromodulatory Examination of Pain and Mobility Across the Lifespan (NEPAL) study. Participants completed demographic and psychological questionnaires, quantitative sensory testing, and a neuroimaging session. A Principal Component Analysis with Varimax rotation followed by hierarchical cluster analysis identified 4 pain sensitivity clusters (the "pain clusters"). RESULTS: Sixty-two older adults ranging from 60 to 94 years old without a specific pain condition (mean [SD] age=71.44 [6.69] y, 66.1% female) were analyzed. Four pain clusters were identified characterized by (1) thermal pain insensitivity; (2) high pinprick pain ratings and pressure pain insensitivity; (3) high thermal pain ratings and high temporal summation; and (4) thermal pain sensitivity, low thermal pain ratings, and low mechanical temporal summation. Sex differences were observed between pain clusters. Pain clusters 2 and 4 were distinguished by differences in the brain cortical volume in the parieto-occipital region. DISCUSSION: While sufficient evidence exists demonstrating pain sensitivity profiles in younger individuals and in those with chronic pain conditions, the finding that subgroups of experimental pain sensitivity also exist in healthy older adults is novel. Identifying these factors in older adults may help differentiate the underlying mechanisms contributing to pain and aging.


Assuntos
Dor Crônica , Vida Independente , Idoso , Doença Crônica , Dor Crônica/psicologia , Feminino , Humanos , Masculino , Medição da Dor/métodos , Limiar da Dor/psicologia , Fenótipo
5.
Exp Gerontol ; 165: 111845, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644417

RESUMO

BACKGROUND: Over-activation of prefrontal cortex during walking has been reported in older adults versus young adults. Heighted activity in prefrontal cortex suggests a shift toward an executive control strategy to control walking. A potential contributing factor is degraded functioning of pattern-generating locomotor circuits in the central nervous system that are important to walking coordination. Somatosensory information is a crucial input to these circuits, so age-related impairment of somatosensation would be expected to compromise the neural control of walking. The present study tested the hypothesis that poorer somatosensation in the feet of older adults will be associated with greater recruitment of the prefrontal cortex during walking. This study also examines the extent to which somatosensory function and prefrontal activity are associated with performance on walking and balance assessments. METHODS: Forty seven older adults (age 74.6 ± 6.8 years; 32 female) participated in walking assessments (typical walking and obstacle negotiation) and Berg Balance Test. During walking, prefrontal activity was measured with functional near infrared spectroscopy (fNIRS). Participants also underwent somatosensory testing with Semmes-Weinstein monofilaments. RESULTS: The primary findings is that worse somatosensory monofilament level was associated with greater prefrontal cortical activity during typical walking (r = 0.38, p = 0.008) and obstacle negotiation (r = 0.40, p = 0.006). For the obstacle negotiation task, greater prefrontal activity was associated with faster walking speed (p = 0.004). Poorer somatosensation was associated with slower typical walking speed (p = 0.07) and obstacles walking speed (p < 0.001), as well as poorer balance scores (p = 0.03). CONCLUSIONS: The study findings are consistent with a compensation strategy of recruiting prefrontal/executive control resources to overcome loss of somatosensory input to the central nervous system. Future research should further establish the mechanisms by which somatosensory impairments are linked to the neural control and performance of walking tasks, as well as develop intervention approaches.


Assuntos
Marcha , Espectroscopia de Luz Próxima ao Infravermelho , Idoso , Idoso de 80 Anos ou mais , Função Executiva/fisiologia , Feminino , Marcha/fisiologia , Humanos , Córtex Pré-Frontal/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Caminhada/fisiologia
6.
Pilot Feasibility Stud ; 7(1): 188, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666839

RESUMO

BACKGROUND: Chronic low back pain (cLBP) is the leading cause of disability among older adults and one of the top reasons for seeking healthcare, resulting in significant decrements in physical functioning. Because older adults are among the fastest growing cohorts in the USA, both the incidence and burden of cLBP are expected to increase considerably, rendering geriatric pain management a top health priority. Resilience is defined as a process allowing individuals to adapt and recover from adverse and stressful conditions, and it has been highlighted as a crucial factor in positive health-related functioning. While a growing body of literature supports the use of resilience-based interventions in chronic pain, research examining their effectiveness in older adults with cLBP remains limited. The primary aims of the study are to assess the feasibility and acceptability of a psychologically oriented resilience intervention among aging adults with cLBP. METHODS: In this article, we describe the rationale and design of the Adaptability and Resilience in Aging Adults (ARIAA) study, a single-arm intervention in which 60 participants (ages ≥ 60 years) with cLBP will be recruited to participate in a 7-week group-based program aimed at enhancing psychological resilience. Intervention sessions will target positive psychology concepts (e.g., positive affect, pain acceptance, hopeful thinking, pain self-efficacy) and cognitive behavioral techniques that have established benefits in pain management. Primary study outcomes include intervention feasibility and acceptability as measured by treatment engagement, intervention credibility and satisfaction, ability to meet recruitment and retention metrics, and the feasibility of questionnaire and home activity completion. Outcomes will be assessed at baseline, immediately at posttreatment, and at the 3-month follow-up period. DISCUSSION: This study will establish the feasibility and acceptability of a novel intervention aimed at enhancing positive, psychological functioning, and resilience in older adults with cLBP. Achievement of these aims will provide a rich platform for future intervention research targeting improvements in pain and disability among geriatric populations and will serve as a foundation for a fully powered trial to examine treatment efficacy of the proposed intervention. TRIAL REGISTRATION: Clinicaltrials.gov, identifier NCT04068922 . Registered 28 August 2019.

7.
Innov Aging ; 4(4): igaa034, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995566

RESUMO

BACKGROUND AND OBJECTIVES: The influence of interindividual differences on brain activation during obstacle negotiation and the implications for walking performance are poorly understood in older adults. This study investigated the extent to which prefrontal recruitment during obstacle negotiation is explained by differences in age, executive function, and sex. These data were interpreted according to the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH) framework of brain aging. We also tested the association between prefrontal recruitment and walking performance. RESEARCH DESIGN AND METHODS: Prefrontal oxygenated hemoglobin concentration (O2Hb) was measured during typical walking (Typical) and obstacle negotiation (Obstacles) tasks in 50 adults aged 65 years and older using functional near-infrared spectroscopy. The primary outcome was the change in prefrontal recruitment (∆PFR), measured as Obstacles ∆O2Hb minus Typical ∆O2Hb. Multiple regression was used to test the relationship between ∆PFR and age, executive function measured by the Trail Making Test, and sex. Pearson's correlation coefficient was used to investigate the association between ∆PFR and the cost of Obstacles walking speed relative to Typical walking. RESULTS: Age, executive function, and their interaction significantly predicted greater ∆PFR (R 2 = 0.34, p = .01). Participants were subgrouped according to age and executive function to examine the interaction effects. Adults of lower age and with lower executive function exhibited greater ∆PFR during Obstacles compared to their peers with higher executive function (p = .03). Adults of advanced age exhibited a ceiling of prefrontal recruitment during obstacle negotiation, regardless of executive function level (p = .87). Greater ∆PFR was significantly associated with a smaller cost of Obstacles (r = 0.3, p = .03). DISCUSSION AND IMPLICATIONS: These findings are consistent with the CRUNCH framework: neural inefficiency where a greater amount of brain activation is needed for task performance at a similar level, compensatory overactivation to prevent a steeper decline in task performance, and capacity limitation with a recruitment ceiling effect.

8.
Exp Gerontol ; 126: 110708, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445107

RESUMO

Musculoskeletal pain is a cause of disability in older individuals and is commonly associated with executive function deficits. In particular, verbal fluency deficits have been previously reported in older individuals with and without musculoskeletal pain, however, no studies have examined non-verbal fluency. The present study investigated non-verbal fluency performance in younger and older individuals and associations with clinical and experimental pain. The NEPAL study included older (n = 63) and younger (n = 28) individuals who completed demographic, and clinical pain assessments followed by a multi-modal QST battery. A subset of participants (older n = 39/63, younger n = 11/28) underwent a structural 3T MRI to extract cortical thickness and subcortical gray matter volumes. The Ruff Figural Fluency Test was administered to assess fluid/divergent thinking, ability to shift cognitive set, and planning strategies. Total Unique Designs drawn and Error Ratio assessed participants' ability to minimize repetition while maximizing unique productions. Adjusting for race and education, older participants with chronic pain had significantly lower Total Unique Designs (67.1 ±â€¯20.3) compared to older adults without chronic pain (78.8 ±â€¯15.9) and younger controls (93.8 ±â€¯20.3, p < 0.001). Within the older sample, those with chronic pain had a significantly greater Error Ratio (0.22 ±â€¯0.3) compared to those without chronic pain (0.09 ±â€¯0.06) and younger controls (0.05 ±â€¯0.05, p = 0.002). In older participants, greater Total Unique Design scores were significantly associated only with lower pressure pain sensitivity (r = 0.300, p = 0.031) while greater Error Ratio scores were significantly associated with greater thermal pain sensitivity (r = 0.304, p = 0.027). However, after accounting for sleep quality, clinical and experimental pain associations were eliminated. Across all participants, non-verbal fluency performance was associated with cortical thickness in frontal, parietal and temporal regions as well as several subcortical gray matter structures even after adjusting for multiple comparisons (p's < 0.001). Our findings suggest a pain-related deficit in non-verbal fluency beyond the established age-related decrements that may be dependent on sleep quality and was associated with specific patterns of gray matter structure.


Assuntos
Envelhecimento/psicologia , Córtex Cerebral/patologia , Dor Crônica/psicologia , Função Executiva/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Córtex Cerebral/diagnóstico por imagem , Dor Crônica/diagnóstico por imagem , Dor Crônica/patologia , Cognição/fisiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Medição da Dor/métodos , Limiar da Dor/fisiologia , Autorrelato , Limiar Sensorial/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA