Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(15): 152001, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167252

RESUMO

There has been much speculation as to the origin of the ΔI=1/2 rule (ReA0/ReA2≃22.5). We find that the two dominant contributions to the ΔI=3/2, K→ππ correlation functions have opposite signs, leading to a significant cancelation. This partial cancelation occurs in our computation of ReA2 with physical quark masses and kinematics (where we reproduce the experimental value of A2) and also for heavier pions at threshold. For ReA0, although we do not have results at physical kinematics, we do have results for pions at zero momentum with mπ≃420 MeV [ReA0/ReA2=9.1(2.1)] and mπ≃330 MeV [ReA0/ReA2=12.0(1.7)]. The contributions which partially cancel in ReA2 are also the largest ones in ReA0, but now they have the same sign and so enhance this amplitude. The emerging explanation of the ΔI=1/2 rule is a combination of the perturbative running to scales of O(2 GeV), a relative suppression of ReA2 through the cancelation of the two dominant contributions, and the corresponding enhancement of ReA0. QCD and electroweak penguin operators make only very small contributions at such scales.

2.
Phys Rev Lett ; 108(14): 141601, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540784

RESUMO

We report on the first realistic ab initio calculation of a hadronic weak decay, that of the amplitude A(2) for a kaon to decay into two π mesons with isospin 2. We find ReA(2)=(1.436±0.063(stat)±0.258(syst))10(-8) GeV in good agreement with the experimental result and for the hitherto unknown imaginary part we find ImA(2)=-(6.83±0.51(stat)±1.30(syst))10(-13) GeV. Moreover combining our result for ImA(2) with experimental values of ReA(2), ReA(0), and ε'/ε, we obtain the following value for the unknown ratio ImA(0)/ReA(0) within the standard model: ImA(0)/ReA(0)=-1.63(19)(stat)(20(syst)×10(-4). One consequence of these results is that the contribution from ImA(2) to the direct CP violation parameter ε' (the so-called Electroweak Penguin contribution) is Re(ε'/ε)(EWP)=-(6.52±0.49(stat)±1.24(syst))×10(-4). We explain why this calculation of A(2) represents a major milestone for lattice QCD and discuss the exciting prospects for a full quantitative understanding of CP violation in kaon decays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA