Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 124: 85-98, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34120836

RESUMO

Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.


Assuntos
MicroRNAs , Doenças Periodontais , RNA Longo não Codificante , Progressão da Doença , Humanos , Inflamação/genética , MicroRNAs/metabolismo , Doenças Periodontais/genética
2.
Biomaterials ; 290: 121819, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209579

RESUMO

The faithful engineering of complex human tissues such as the bone/soft tissue/mineralized tissue interface in periodontal tissues requires innovative molecular cues in conjunction with tailored scaffolds. To address the loss of periodontal bone and connective tissues following periodontal disease, we have generated a polydopamine and collagen coated electrospun PLGA-PCL (PP) scaffold enriched with the small molecule mediator PFI-2 (PP-PFI-pDA-COL-PFI). In vitro 3D studies using PDL progenitors revealed that the PP-PFI-pDA-COL-PFI scaffold substantially enhanced Alizarin Red staining, increased Ca/P ratios 4-fold, and stimulated cell proliferation more than 12-fold compared to PP-controls, suggestive of its potential for mineralized tissue engineering. When applied in our experimental periodontitis model, the PP-PFI-pDA-COL-PFI scaffold resulted in a substantial 34% reduction in alveolar bone defect height, a 25% root-length gain in periodontal attachment, and the formation of highly ordered regenerated acellular cementum twice as thick as in controls. Explaining the mechanism of PFI-2 mineralized tissue regeneration in periodontal tissues, PFI-2 inhibited SETD7-mediated ß-Catenin protein methylation and increased ß-Catenin nuclear localization. Together, dual-level PFI-2 incorporation into a degradable, dopamine/collagen coated PLGA/PCL scaffold backbone resulted in the regeneration of the tripartite periodontal complex with unprecedented fidelity, including periodontal attachment and new formation of mineralized tissues in inflamed periodontal environments.


Assuntos
Ligamento Periodontal , Alicerces Teciduais , Humanos , Isoquinolinas/metabolismo , Colágeno/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Histona-Lisina N-Metiltransferase/metabolismo
3.
Stem Cells Dev ; 30(16): 797-805, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34060920

RESUMO

The growth of long and polarized ameloblast-like cells has long been heralded as a major prerequisite for enamel tissue engineering. In this study, we have designed three-dimensional bioreactor/scaffold microenvironments to propagate and assess the ability of cervical loop derivatives to become long and polarized ameloblast-like cells. Our studies demonstrated that cervical loop/periodontal progenitor coculture in a growth-factor-enriched medium resulted in the formation of ameloblast-like cells expressing high levels of amelogenin and ameloblastin. Coculture of cervical loop cells with dental pulp cells on tailored collagen scaffolds enriched with leucine-rich amelogenin peptide (LRAP) and early enamel matrix resulted in singular, elongated, and polarized ameloblast-like cells that expressed and secreted ameloblastin and amelogenin enamel proteins. Bioreactor microenvironments enriched with enamel matrix and LRAP also proved advantageous for the propagation of HAT-7 cells, resulting in a ∼20-fold higher expression of amelogenin and ameloblastin enamel proteins compared with controls growing on plain scaffolds. Together, studies presented here highlight the benefits of microgravity culture systems combined with ameloblast-specific microenvironments and tailored scaffolds for the growth of ameloblast-like cells.


Assuntos
Ameloblastos , Polpa Dentária , Ameloblastos/metabolismo , Amelogenina/metabolismo , Reatores Biológicos , Diferenciação Celular , Técnicas de Cocultura , Polpa Dentária/metabolismo
4.
J Vis Exp ; (171)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34125109

RESUMO

Gravity is one of the key determinants of human cell function, proliferation, cytoskeletal architecture and orientation. Rotary bioreactor systems (RCCSs) mimic the loss of gravity as it occurs in space and instead provide a microgravity environment through continuous rotation of cultured cells or tissues. These RCCSs ensure an un-interrupted supply of nutrients, growth and transcription factors, and oxygen, and address some of the shortcomings of gravitational forces in motionless 2D (two dimensional) cell or organ culture dishes. In the present study we have used RCCSs to co-culture cervical loop cells and dental pulp cells to become ameloblasts, to characterize periodontal progenitor/scaffold interactions, and to determine the effect of inflammation on lung alveoli. The RCCS environments facilitated growth of ameloblast-like cells, promoted periodontal progenitor proliferation in response to scaffold coatings, and allowed for an assessment of the effects of inflammatory changes on cultured lung alveoli. This manuscript summarizes the environmental conditions, materials, and steps along the way and highlights critical aspects and experimental details. In conclusion, RCCSs are innovative tools to master the culture and 3D (three dimensional) growth of cells in vitro and to allow for the study of cellular systems or interactions not amenable to classic 2D culture environments.


Assuntos
Ausência de Peso , Reatores Biológicos , Linhagem Celular , Células Cultivadas , Humanos , Simulação de Ausência de Peso
5.
Stem Cells Dev ; 28(15): 1015-1025, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31218921

RESUMO

Inflammatory conditions affect periodontal ligament (PDL) homeostasis and diminish its regenerative capacity. The complexity of biological activities during an inflammatory response depends on genetic and epigenetic mechanisms. To characterize the epigenetic changes in response to periodontal pathogens we have focused on histone lysine methylation as a relatively stable chromatin modification involved in the epigenetic activation and repression of transcription and a prime candidate mechanism responsible for the exacerbated and prolonged response of periodontal cells and tissues to dental plaque biofilm. To determine the effect of inflammatory conditions on histone methylation profiles, related gene expression and cellular functions of human periodontal ligament (hPDL) progenitor cells, a hPDL cell culture system was subjected to bacterial cell wall toxin exposure [lipopolysaccharide (LPS)]. Chromatin immunoprecipitation-on-chip analysis revealed that healthy PDL cells featured high enrichment levels for the active H3K4me3 mark at COL1A1, COL3, and RUNX2 gene promoters, whereas there were high occupancy levels for the repressive H3K27me3 marks at DEFA4, CCL5, and IL-1ß gene promoters. In response to LPS, H3K27me3 enrichment increased on extracellular matrix and osteogenesis lineage gene promoters, whereas H3K4me3 enrichment increased on the promoters of inflammatory response genes, suggestive of an involvement of epigenetic mechanisms in periodontal lineage differentiation and in the coordination of the periodontal inflammatory response. On a gene expression level, LPS treatment downregulated COL1A1, COL3A1, and RUNX2 expression and upregulated CCL5, DEFA4, and IL-1ß gene expression. LPS also greatly affected PDL progenitor function, including a reduction in proliferation and differentiation potential and an increase in cell migration capacity. Confirming the role of epigenetic mechanisms in periodontal inflammatory conditions, our studies highlight the significant role of histone methylation mechanisms and modification enzymes in the inflammatory response to LPS bacterial cell wall toxins and periodontal stem cell function.


Assuntos
Histona Metiltransferases/metabolismo , Histonas/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Osteogênese/genética , Ligamento Periodontal/citologia , Ligamento Periodontal/patologia , Periodontite/genética , Periodontite/patologia , Processamento de Proteína Pós-Traducional/fisiologia , Células-Tronco/imunologia , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA