Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Analyst ; 149(10): 2898-2904, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38572620

RESUMO

Bacterial infections are a leading cause of death globally. The detection of DNA sequences correlated to the causative pathogen has become a vital tool in medical diagnostics. In practice, PCR-based assays for the simultaneous detection of multiple pathogens currently rely on probe-based quantitative strategies that require expensive equipment but have limited sensitivity or multiplexing capabilities. Hence, novel approaches to address the limitations of the current gold standard methods are still in high demand. In this study, we propose a simple multiplex PCR/SERS assay for the simultaneous detection of four bacterial pathogens, namely P. aeruginosa, S. aureus, S. epidermidis, and M. smegmatis. Wherein, specific primers for amplifying each target gDNA were applied, followed by applying SERS nanotags functionalized with complementary DNA probes and Raman reporters for specific identification of the target bacterial pathogens. The PCR/SERS assay showed high specificity and sensitivity for genotyping bacterial pathogen gDNA, whereby as few as 100 copies of the target gDNA could be detected. With high sensitivity and the convenience of standard PCR amplification, the proposed assay shows great potential for the sensitive detection of multiple pathogen infections to aid clinical decision-making.


Assuntos
Bactérias , Reação em Cadeia da Polimerase Multiplex , Análise Espectral Raman , Reação em Cadeia da Polimerase Multiplex/métodos , Bactérias/isolamento & purificação , Bactérias/genética , Análise Espectral Raman/métodos , DNA Bacteriano/análise , DNA Bacteriano/genética , Limite de Detecção , Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase/métodos
2.
Analyst ; 146(18): 5714-5721, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515700

RESUMO

The molecular diagnosis of KRAS mutations has become crucial for clinical decision-making in colorectal cancer (CRC) treatments. Currently, the common methods for detecting mutations are based on quantitative PCR, DNA sequencing and droplet digital PCR (ddPCR), which require expensive specialized equipment and testing reagents. Herein, we propose a simple and specific strategy by integrating asymmetric PCR with surface-enhanced Raman spectroscopy (Asy-PCR/SERS) for the detection of KRAS G12V mutation, one of the most common driver mutations in CRC. To discriminate mutant targets from non-targets, Asy-PCR was applied to obtain single-stranded DNA (ssDNA) with unequal amounts of forward and reverse primers, subsequently, detection of the target mutant ssDNA amplicons was attempted by hybridization with Raman reporter-coded and allele-specific oligonucleotide-functionalized gold nanoparticles (SERS nanotags). The oligo encoding of the KRAS G12V mutant sequence could be identified by using a portable Raman spectrometer where the characteristic spectra of SERS nanotags indicate the presence of mutant targets. The Asy-PCR/SERS method showed high specificity and sensitivity for identifying as few as 0.1% mutant alleles of KRAS G12V mutation from non-target sequences. Using colorectal polyp biopsies, we demonstrated that Asy-PCR/SERS assay could distinguish KRAS G12V (c.35G > T) and KRAS G12D (c.35G > A) which occur at the same nucleotide location. As KRAS G12V is a driver oncogene in other cancers including lung, pancreatic, ovarian and endometrial cancers, the proposed assay shows great potential for application in additional tumor streams.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Ouro , Humanos , Mutação , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas p21(ras)/genética
3.
Molecules ; 26(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499047

RESUMO

Epidermal growth factor receptor (EGFR) is estimated to be overexpressed in 60~80% of colorectal cancer (CRC), which is associated with a poor prognosis. Anti-EGFR targeted monoclonal antibodies (cetuximab and panitumumab) have played an important role in the treatment of metastatic CRC. However, the therapeutic response of anti-EGFR monoclonal antibodies is limited due to multiple resistance mechanisms. With the discovery of new functions for gold nanoparticles (AuNPs), we hypothesize that cetuximab-conjugated AuNPs (cetuximab-AuNPs) will not only improve the cytotoxicity for cancer cells, but also introduce expression change of the related biomarkers on cancer cell surface. In this contribution, we investigated the size-dependent cytotoxicity of cetuximab-AuNPs to CRC cell line (HT-29), while also monitored the expression of cell surface biomarkers in response to treatment with cetuximab and cetuximab-AuNPs. AuNPs with the size of 60 nm showed the highest impact for cell cytotoxicity, which was tested by cell counting kit-8 (CCK-8) assay. Three cell surface biomarkers including epithelial cell adhesion molecule (EpCAM), melanoma cell adhesion molecule (MCAM), and human epidermal growth factor receptor-3 (HER-3) were found to be expressed at higher heterogeneity when cetuximab was conjugated to AuNPs. Both surface-enhanced Raman scattering/spectroscopy (SERS) and flow cytometry demonstrated the correlation of cell surface biomarkers in response to the drug treatment. We thus believe this study provides powerful potential for drug-conjugated AuNPs to enhance cancer prognosis and therapy.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Cetuximab/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Biomarcadores Tumorais/metabolismo , Antígeno CD146/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Ouro , Células HT29 , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanoconjugados/administração & dosagem , Nanoconjugados/ultraestrutura , Tamanho da Partícula , Fenótipo , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise Espectral Raman
4.
Anal Chem ; 92(8): 5708-5716, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32223184

RESUMO

Efficient DNA mutation detection methods are required for diagnosis, personalized therapy development, and prognosis assessment for diseases such as cancer. To address this issue, we proposed a straightforward approach by combining active plasmonic nanostructures, surface-enhanced Raman spectroscopy (SERS), and polymerase chain reaction (PCR) with a statistical tool to identify and classify BRAF wild type (WT) and V600E mutant genes. The nanostructures provide enhanced sensitivity, while PCR offers high specificity toward target DNA. A series of positively charged plasmonic nanostructures including gold/silver nanospheres, nanoshells, nanoflowers, and nanostars were synthesized with a one-pot strategy and characterized. By changing the shape of nanostructures, we are able to vary the surface plasmon resonance from 551 to 693 nm. The gold/silver nanostar showed the highest SERS activity, which was employed for DNA mutation detection. We reproducibly analyzed as few as 100 copies of target DNA sequences using gold/silver nanostars, thus demonstrating the high sensitivity of the direct SERS detection. By means of statistical analysis (principal component analysis-linear discriminant analysis), this method was successfully applied to differentiate the WT and V600E mutant both from whole genome DNA lysed from cell line and from cell-free DNA collected from cell culture media. We further proved that this assay is capable of specifically amplifying and accurately classifying a real plasma sample. Thus, this direct SERS strategy combined with the active plasmonic nanostructures has the potential for wide applications as an alternative tool for sensitively monitoring and evaluating important clinical nucleotide biomarkers.


Assuntos
DNA/genética , Nanoestruturas/química , Animais , Bovinos , Humanos , Mutação , Análise Espectral Raman , Células Tumorais Cultivadas
5.
Nano Converg ; 11(1): 22, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811455

RESUMO

Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.

6.
Front Microbiol ; 14: 1275649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908544

RESUMO

Infectious hematopoietic necrosis (IHN) is a major disease that limits the culture of rainbow trout. In practical production, it has been found that the temperature of the culture water is a crucial factor affecting its mortality. Currently, little is known about how temperature affects the immune response of rainbow trout gut microbiota and metabolites to IHNV. In this study, our main objective is to analyze the changes in gut microorganisms of rainbow trout (juvenile fish with a consistent genetic background) after 14 days of infection with IHNV (5 × 105 pfu/fish) at 12-13°C (C: injected with saline, A: injected with IHNV) and 16-17°C (D: injected with saline, B: injected with IHNV) using metagenomic and metabolomic analyses, and to screen for probiotics that are effective against IHNV. The results showed that infection with IHNV at 12-13°C caused Eukaryote loss. Compared to Group C, Group A showed a significant increase in harmful pathogens, such as Yersiniaceae, and a significant alteration of 4,087 gut metabolites. Compared to group D, group B showed a significant increase in the abundance of Streptococcaceae and Lactococcus lactis, along with significant changes in 4,259 intestinal metabolites. Compared with their respective groups, the levels of two immune-related metabolites, 1-Octadecanoyl-glycero-3-phosphoethanolamine and L-Glutamate, were significantly upregulated in groups A and B. Compared to group B, Group A showed significantly higher pathogenic bacteria including Aeromonas, Pseudomonas, and Yersiniaceae, while group B showed a significant increase in Streptococcaceae and Lactococcus lactis. Additionally, there were 4,018 significantly different metabolites between the two groups. Interestingly, 1-Octadecanoyl-sn-glycero-3-phosphoethanolamine and L-Glutamate were significantly higher in group A than in group B. Some of the different metabolites in C vs. A are correlated with Fomitopsis pinicola, while in D vs. B they were correlated with Lactococcus raffinolactis, and in A vs. B they were correlated with Hypsizygus marmoreus. This study exposed how rainbow trout gut microbiota and metabolites respond to IHNV at different temperatures, and screens beneficial bacteria with potential resistance to IHN, providing new insights and scientific basis for the prevention and treatment of IHN.

7.
Exploration (Beijing) ; 2(3): 20210176, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323700

RESUMO

Colorectal cancer (CRC) is the third most diagnosed and the second lethal cancer worldwide. Approximately 30-50% of CRC are driven by mutations in the KRAS oncogene, which is a strong negative predictor for response to anti-epidermal growth factor receptor (anti-EGFR) therapy. Examining the phenotype of KRAS mutant and wild-type (WT) CRC cells in response to anti-EGFR treatment may provide significant insights into drug response and resistance. Herein, surface-enhanced Raman spectroscopy (SERS) assay was applied to phenotype four cell surface proteins (EpCAM, EGFR, HER2, HER3) in KRAS mutant (SW480) and WT (SW48) cells over a 24-day time course of anti-EGFR treatment with cetuximab. Cell phenotypes were obtained using Raman reporter-coated and antibody-conjugated gold nanoparticles (SERS nanotags), where a characteristic Raman spectrum was generated upon single laser excitation, reflecting the presence of the targeted surface marker proteins. Compared to the KRAS mutant cells, KRAS WT cells were more sensitive to anti-EGFR treatment and displayed a significant decrease in HER2 and HER3 expression. The SERS results were validated with flow cytometry, confirming the SERS assay is promising as an alternative method for multiplexed characterization of cell surface biomarkers using a single laser excitation system.

8.
Nanotheranostics ; 4(4): 224-232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923312

RESUMO

Molecular diagnostic testing of KRAS and BRAF mutations has become critical in the management of colorectal cancer (CRC) patients. Some progress has been made in liquid biopsy detection of mutations in circulating tumor DNA (ctDNA), which is a fraction of circulating cell-free DNA (cfDNA), but slow analysis for DNA sequencing methods has limited rapid diagnostics. Other methods such as quantitative PCR and more recently, droplet digital PCR (ddPCR), have limitations in multiplexed capacity and the need for expensive specialized equipment. Hence, a robust, rapid and facile strategy is needed for detecting multiple ctDNA mutations to improve the management of CRC patients. To address this significant problem, herein, we propose a new application of multiplex PCR/SERS (surface-enhanced Raman scattering) assay for the detection of ctDNA in CRC, in a fast and non-invasive manner to diagnose and stratify patients for effective treatment. Methods: To discriminate ctDNA mutations from wild-type cfDNA, allele-specific primers were designed for the amplification of three clinically important DNA point mutations in CRC including KRAS G12V, KRAS G13D and BRAF V600E. Surface-enhanced Raman scattering (SERS) nanotags were labelled with a short and specific sequence of oligonucleotide, which can hybridize with the corresponding PCR amplicons. The PCR/SERS assay was implemented by firstly amplifying the multiple mutations, followed by binding with multicolor SERS nanotags specific to each mutation, and subsequent enrichment with magnetic beads. The mutation status was evaluated using a portable Raman spectrometer where the fingerprint spectral peaks of the corresponding SERS nanotags indicate the presence of the mutant targets. The method was then applied to detect ctDNA from CRC patients under a blinded test, the results were further validated by ddPCR. Results: The PCR/SERS strategy showed high specificity and sensitivity for genotyping CRC cell lines and plasma ctDNA, where as few as 0.1% mutant alleles could be detected from a background of abundant wild-type cfDNA. The blinded test using 9 samples from advanced CRC patients by PCR/SERS assay was validated with ddPCR and showed good consistency with pathology testing results. Conclusions: With ddPCR-like sensitivity yet at the convenience of standard PCR, the proposed assay shows great potential in sensitive detection of multiple ctDNA mutations for clinical decision-making.


Assuntos
DNA Tumoral Circulante/sangue , Neoplasias Colorretais , Biópsia Líquida/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Análise Espectral Raman/métodos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HCT116 , Humanos , Mutação/genética , Sensibilidade e Especificidade
9.
Ying Yong Sheng Tai Xue Bao ; 26(2): 481-9, 2015 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-26094464

RESUMO

A field experiment was conducted for two years to investigate the effects of different fertilization applications on the suppression of banana fusarium wilt disease, crop yield, fruit quality and culturable microflora in a banana orchard which has been monocultured with banana for 12 years and suffered serious banana fusarium wilt disease. The fertilizers included chemical fertilizer (CF), cow manure compost (CM), pig manure compost (PM) and bio-organic fertilizer (BIO). The banana soil microflora was invested using plate-counting method and culture-dependent polymerase chain reaction denaturing gradient gel electrophoresis method (CD PCR-DGGE). Results showed that, compared with the other treatments, 2-year consecutive application of BIO significantly reduced the banana fusarium wilt disease incidence, and improved the banana mass per tree, crop yield, total soluble sugar content and the ratio of total soluble sugar to titratable acidity of fruits (sugar/acid ratio). Moreover, the analysis of culturable microflora showed that BIO application significantly increased the soil microbial biomass, soil culturable bacteria, bacillus and actinomycetes, and the ratio of bacteria to fungi (B/F) , while decreased the Fusarium oxysporum. Based on the CD PCR-DGGE results, the BIO application significantly altered the soil culturable bacterial structure and showed highest richness and diversity after 2 years of BIO application. The phylogenetic analysis of the selected bands showed that BIO application enriched the soil with the species of Paenibacillus sp., Burkholderia sp., uncultured Verrucomicrobia sp. and Bacillus aryabhattai, and depressed the species of Ralstonia sp., Chryseobacterium gleum, Fluviicola taffensis, Enterobacter sp. and Bacillus megaterium. These results confirmed that the continuous application of BIO effectively controlled the fusarium wilt disease, improved the crop yield and fruit quality, and modulated the soil culturable microflora under field condition.


Assuntos
Fertilizantes , Esterco , Musa/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Microbiologia do Solo , Animais , Bactérias , Biomassa , Bovinos , Fusarium , Musa/microbiologia , Filogenia , Solo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA