RESUMO
Biosolids are a byproduct of wastewater treatment that can be beneficially applied to agricultural land as a fertilizer. While U.S. regulations limit metals and pathogens in biosolids intended for land applications, no organic contaminants are currently regulated. Novel techniques can aid in detection, evaluation, and prioritization of biosolid-associated organic contaminants (BOCs). For example, nontargeted analysis (NTA) can detect a broad range of chemicals, producing data sets representing thousands of measured analytes that can be combined with computational toxicological tools to support human and ecological hazard assessment and prioritization. We combined NTA with a computer-based tool from the U.S. EPA, the Cheminformatics Hazard Comparison Module (HCM), to identify and prioritize BOCs present in U.S. and Canadian biosolids (n = 16). Four-hundred fifty-one features were detected in at least 80% of samples, with identities of 92 compounds confirmed or assigned probable structures. These compounds were primarily categorized as endogenous compounds, pharmaceuticals, industrial chemicals, and fragrances. Examples of top prioritized compounds were p-cresol and chlorophene, based on human health end points, and fludioxonil and triclocarban, based on ecological health end points. Combining NTA results with hazard comparison data allowed us to prioritize compounds to be included in future studies of the environmental fate and transport of BOCs.
Assuntos
Águas Residuárias , Águas Residuárias/química , Monitoramento Ambiental/métodos , Humanos , Compostos Orgânicos/análiseRESUMO
This study investigated the presence and human hazards associated with pesticides and other anthropogenic chemicals identified in kale grown in urban and rural environments. Pesticides and related compounds (i.e., surfactants and metabolites) in kale samples were evaluated using a nontargeted data acquisition for targeted analysis method which utilized a pesticide mixture containing >1,000 compounds for suspect screening and quantification. We modeled population-level exposures and assessed noncancer hazards to DEET, piperonyl butoxide, prometon, secbumeton, terbumeton, and spinosyn A using nationally representative estimates of kale consumption across life stages in the US. Our findings indicate even sensitive populations (e.g., pregnant women and children) are not likely to experience hazards from these select compounds were they to consume kale from this study. However, a strictly nontargeted chemical analytical approach identified a total of 1,822 features across all samples, and principal component analysis revealed that the kale chemical composition may have been impacted by agricultural growing practices and environmental factors. Confidence level 2 compounds that were ≥5 times more abundant in the urban samples than in rural samples (p < 0.05) included chemicals categorized as "flavoring and nutrients" and "surfactants" in the EPA's Chemicals and Products Database. Using the US-EPA's Cheminformatics Hazard Module, we identified that many of the nontarget compounds have predicted toxicity scores of "very high" for several end points related to human health. These aspects would have been overlooked using traditional targeted analysis methods, although more information is needed to ascertain whether the compounds identified through nontargeted analysis are of environmental or human health concern. As such, our approach enabled the identification of potentially hazardous compounds that, based on their hazard assessment score, merit follow-up investigations.
Assuntos
Brassica , Praguicidas , Gravidez , Criança , Feminino , Humanos , Fazendas , Medição de Risco , Praguicidas/análiseRESUMO
BACKGROUND: Urine is an abundant and useful medium for measuring biomarkers related to chemical exposures in infants and children. Identification of novel biomarkers is greatly enhanced with non-targeted analysis (NTA), a powerful methodology for broad chemical analysis of environmental and biological specimens. However, collecting urine in non-toilet trained children presents many challenges, and contamination from specimen collection can impact NTA results. OBJECTIVES: We optimized a caregiver-driven method for collecting urine from infants and children using cotton pads and commercially available disposable diapers for NTA and demonstrate its applicability to various children biomonitoring studies. METHODS: Experiments were first performed to evaluate the effects of processing method (i.e., centrifuge vs. syringe), storage temperature, and diaper brand on recovery of urine absorbed to cotton pads. Caregivers of 11 children (<2 years) used and retained diapers (with cotton pads) to collect their child's urine for 24 h. Specimens were analyzed via a NTA method implementing an exclusion list of ions related to contamination from collection materials. RESULTS: Centrifuging cotton pads through a small-pore membrane, compared to a manual syringe method, and storing diapers at 4 °C, compared to room temperature, resulted in larger volumes of recovered sample. This method was successfully implemented to recover urine from cotton pads collected in the field; between 5-9 diapers were collected per child in 24 h, and the total mean volume of urine recovered was 44.7 (range 26.7-71.1) mL. NTA yielded a list of compounds present in urine and/or stool that may hold promise as biomarkers of chemical exposures from a variety of sources. IMPACT STATEMENT: Infant and children urine is a valuable matrix for studies of the early life exposome, in that numerous biological markers of exposure and outcome can be derived from a single analysis. Depending on the nature of the exposure study, it may be the case that a simple collection method that can be facilitated by caregivers of young children is desirable, especially when time-integrated samples or large volumes of urine are needed. We describe the process for development and results of an optimized method for urine collection and analysis using commercially available diapers and non-target analysis.