Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955551

RESUMO

The rapid emergence of antibiotic resistance demands new antimicrobial strategies that are less likely to develop resistance. Augmenting the synthesis of endogenous host defense peptides (HDPs) has been proven to be an effective host-directed therapeutic approach. This study aimed to identify small-molecule compounds with a strong ability to induce endogenous HDP synthesis for further development as novel antimicrobial agents. By employing a stable HDP promoter-driven luciferase reporter cell line known as HTC/AvBD9-luc, we performed high-throughput screening of 5002 natural and synthetic compounds and identified 110 hits with a minimum Z-score of 2.0. Although they were structurally and functionally diverse, half of these hits were inhibitors of class I histone deacetylases, the phosphoinositide 3-kinase pathway, ion channels, and dopamine and serotonin receptors. Further validations revealed mocetinostat, a benzamide histone deacetylase inhibitor, to be highly potent in enhancing the expression of multiple HDP genes in chicken macrophage cell lines and jejunal explants. Importantly, mocetinostat was more efficient than entinostat and tucidinostat, two structural analogs, in promoting HDP gene expression and the antibacterial activity of chicken macrophages. Taken together, mocetinostat, with its ability to enhance HDP synthesis and the antibacterial activity of host cells, could be potentially developed as a novel antimicrobial for disease control and prevention.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Galinhas/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
2.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32358003

RESUMO

The gastrointestinal (GI) tract harbors a diverse population of microorganisms. While much work has been focused on the characterization of the bacterial community, very little is known about the fungal community, or mycobiota, in different animal species and chickens in particular. Here, we characterized the biogeography of the mycobiota along the GI tract of day 28 broiler chicks and further examined its possible shift in response to bacitracin methylene disalicylate (BMD), a commonly used in-feed antibiotic, through Illumina sequencing of the internal transcribed spacer 2 (ITS2) region of fungal rRNA genes. Out of 124 samples sequenced, we identified a total of 468 unique fungal features that belong to four phyla and 125 genera in the GI tract. Ascomycota and Basidiomycota represented 90% to 99% of the intestinal mycobiota, with three genera, i.e., Microascus, Trichosporon, and Aspergillus, accounting for over 80% of the total fungal population in most GI segments. Furthermore, these fungal genera were dominated by Scopulariopsis brevicaulis (Scopulariopsis is the anamorph form of Microascus), Trichosporon asahii, and two Aspergillus species. We also revealed that the mycobiota are more diverse in the upper than lower GI tract. The cecal mycobiota transitioned from being S. brevicaulis dominant on day 14 to T. asahii dominant on day 28. Furthermore, 2-week feeding of 55 mg/kg BMD tended to reduce the cecal mycobiota α-diversity. Taken together, we provided a comprehensive biogeographic view and succession pattern of the chicken intestinal mycobiota and its influence by BMD. A better understanding of intestinal mycobiota may lead to the development of novel strategies to improve animal health and productivity.IMPORTANCE The intestinal microbiota is critical to host physiology, metabolism, and health. However, the fungal community has been often overlooked. Recent studies in humans have highlighted the importance of the mycobiota in obesity and disease, making it imperative that we increase our understanding of the fungal community. The significance of this study is that we revealed the spatial and temporal changes of the mycobiota in the GI tract of the chicken, a nonmammalian species. To our surprise, the chicken intestinal mycobiota is dominated by a limited number of fungal species, in contrast to the presence of hundreds of bacterial taxa in the bacteriome. Additionally, the chicken intestinal fungal community is more diverse in the upper than the lower GI tract, while the bacterial community shows an opposite pattern. Collectively, this study lays an important foundation for future work on the chicken intestinal mycobiome and its possible manipulation to enhance animal performance and disease resistance.


Assuntos
Antifúngicos/farmacologia , Bacitracina/farmacologia , Galinhas/microbiologia , Fungos/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/microbiologia , Micobioma/efeitos dos fármacos , Salicilatos/farmacologia , Animais , Masculino
3.
BMC Microbiol ; 19(1): 82, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023222

RESUMO

BACKGROUND: The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals. RESULTS: We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains. CONCLUSIONS: The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Aves Domésticas/microbiologia , Animais , Proteínas de Bactérias/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , China , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Fazendas , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Fatores de Virulência/genética , beta-Lactamases/genética
4.
Anim Biosci ; 37(7): 1213-1224, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38665077

RESUMO

OBJECTIVE: Enterotypes (ETs) are the clustering of gut microbial community structures, which could serve as indicators of growth performance and carcass traits. However, ETs have been sparsely investigated in waterfowl. The objective of this study was to identify the ileal ETs and explore the correlation of the ETs with growth performance and carcass traits in Muscovy ducks. METHODS: A total of 200 Muscovy ducks were randomly selected from a population of 5,000 ducks at 70-day old, weighed and slaughtered. The growth performance and carcass traits, including body weight, dressed weight and evidenced weight, dressed percentage, percentage of apparent yield, breast muscle weight, leg muscle weight, percentage of leg muscle and percentage of breast muscle, were determined. The contents of ileum were collected for the isolation of DNA and 16S rRNA gene sequencing. The ETs were identified based on the 16S rRNA gene sequencing data and the correlation of the ETs with growth performance and carcass traits was performed by Spearman correlation analysis. RESULTS: Three ETs (ET1, ET2, and ET3) were observed in the ileal microbiota of Muscovy ducks with significant differences in number of features and α-diversity among these ETs (p<0.05). Streptococcus, Candida Arthritis, and Bacteroidetes were the presentative genus in ET1 to ET3, respectively. Correlation analysis revealed that Lactococcus and Bradyrhizobium were significantly correlated with percentage of eviscerated yield and leg muscle weight (p<0.05) while ETs were found to have a close association with percentage of eviscerated yield, leg muscle weight, and percentage of leg muscle in Muscovy ducks. However, the growth performance of ducks with different ETs did not show significant difference (p>0.05). Lactococcus were found to be significantly correlated with leg muscle weight, dressed weight, and percentage of eviscerated yield. CONCLUSION: Our findings revealed a substantial variation in carcass traits associated with ETs in Muscovy ducks. It is implied that ETs might have the potential to serve as a valuable biomarker for assessing duck carcass traits. It would provide novel insights into the interaction of gut microbiota with growth performance and carcass traits of ducks.

5.
Food Res Int ; 194: 114941, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232551

RESUMO

The fate of Alternaria toxin tenuazonic acid (TeA) during the processing chain of wheat flour products was systemically evaluated. TeA was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and the corresponding wheat flour products produced throughout the whole chain. The results indicated that TeA contamination in wheat grains largely determines the level of TeA toxin present in byproducts, semi-finished products, and finished products of the processing of four types of simulated processed wheat flour products (e.g., dry noodles, steamed breads, baked breads, and biscuits). The different food processing techniques had different effects on the fate of TeA. Wheat flour processing can reduce the TeA content in wheat grains by 58.7-83.2 %, indicating that wheat flour processing is a key step in reducing the TeA content in the food chain. Among the four types of wheat flour products, the decreases in TeA content in biscuits (69.8-76.7 %) were greater than those in dry noodles (15.5-22.3 %) and steamed breads (24.9-43.6 %). In addition, the decreasing effect of TeA was especially obvious in the wheat flour product chain with a high level of contamination. The processing factors (PFs) for TeA were as low as 0.20 for the four wheat processing methods and as high as 1.24 for the dry noodle processing method. At the average and 95th percentiles, dietary exposure to TeA in Chinese consumers including infants and young children did not exceed the relevant threshold value of toxicological concern (TTC) of TeA (1.5 µg/kg body weight per day), indicating an acceptable health risk for Chinese consumers via wheat flour products. These findings provide new insight into the fate of TeA in the food chain and mycotoxin control on the safety of wheat flour products and public health.


Assuntos
Alternaria , Farinha , Contaminação de Alimentos , Manipulação de Alimentos , Espectrometria de Massas em Tandem , Ácido Tenuazônico , Triticum , Ácido Tenuazônico/análise , Farinha/análise , Triticum/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Micotoxinas/análise , Humanos , Cromatografia Líquida , Pão/análise
6.
Food Res Int ; 178: 113946, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309871

RESUMO

Chemical hazards in foods, especially naturally occurring food contaminants like mycotoxins, are of serious public health concern. It is important to develop a practical framework to assess and rank health risks of chemical contaminants which can be further utilized by regulatory agencies to prioritize resources for risk assessment and management. In this study, a tiered hazard-prioritization and risk-ranking approach, which included two steps: exposure-based screening and margin of exposure (MOE)-based probabilistic risk ranking; was proposed to efficiently identify and rank chemicals of health concerns. Given the exposure-based hazard prioritization, chemicals with negligible or low health risks were first excluded. The remaining chemicals, imposing a higher health risk, were then ranked to facilitate risk-based decision making. The proposed approach was applied to identify and rank the mycotoxins with substantial health concerns in food commodities randomly sampled in China. A total of 19 mycotoxins were analyzed in 783 food commodities, including infant cookie, noodle, rice flour samples, wheat flour, millet, and rice. Results showed that the mycotoxins in infant foods with the highest health risk were Tenuazonic acid, Deoxynivalenol, and Enniatin B1, but as indicated by the probabilistic MOE estimation, the risks were still in the acceptable range and generally lower than the risks imposed by trace elements (e.g., Arsenic and Cadmium). The health risks of the other 16 mycotoxins were negligible mainly due to their low exposure levels. This study demonstrated that the proposed tiered approach was an efficient and effective tool to quantify and prioritize health risks in support of human health risk management.


Assuntos
Micotoxinas , Lactente , Humanos , Micotoxinas/análise , Farinha , Contaminação de Alimentos/análise , Triticum , Medição de Risco/métodos
7.
Food Res Int ; 187: 114304, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763623

RESUMO

This study evaluated muti-mycotoxins in 199 samples including processed infant foods and raw materials collected randomly from an infant food company and assessed their role in dietary exposure in infants and young children via probabilistic risk assessment. Approximately 79.6 % (74/93) of the processed infant foods and 65.1 % (69/106) of the raw materials were contaminated by mycotoxins, with a mean occurrence level of 3.66-321.8 µg/kg. Deoxynivalenol (DON) and tenuazonic acid (TeA) were the more prevalent mycotoxins detected, based on their higher frequencies and levels across samples. Co-occurrence of more than two mycotoxins was detected in 61.3 % (57/93) of the processed infant foods and 53.8 % (57/106) of the raw materials. Wheat flour and derived products (e.g., infant noodles and infant biscuits) were contaminated with higher contamination levels and a greater variety of mycotoxins than other samples (e.g., infant cereal and rice grains). The estimated daily exposure to OTA, DON, ZEN, and TEN was lower than the corresponding reference health-based guidance values, indicating acceptable health risks. However, the estimated dietary exposure to alternariol monomethyl ether (AME), alternariol (AOH), and tenuazonic acid (TeA) exceeded the corresponding thresholds of toxicological concern values, indicating potential dietary intake risks. Among the various samples, cereals and cereal-based infant foods emerged as the primary contributors to mycotoxin exposure. Further research is advised to address the uncertainties surrounding the toxicity associated with emerging Alternaria mycotoxins and to conduct cumulative risk assessments concerning multiple mycotoxin exposure in infants and young children.


Assuntos
Exposição Dietética , Contaminação de Alimentos , Alimentos Infantis , Micotoxinas , Micotoxinas/análise , Medição de Risco , Alimentos Infantis/análise , Humanos , Contaminação de Alimentos/análise , Lactente , China , Exposição Dietética/análise , Exposição Dietética/efeitos adversos , Grão Comestível/química , Grão Comestível/microbiologia , Farinha/análise , Tricotecenos/análise , Microbiologia de Alimentos
8.
Sci Total Environ ; 927: 172078, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582109

RESUMO

Archaea play a crucial role in microbial systems, including driving biochemical reactions and affecting host health by producing methane through hydrogen. The study of swine gut archaea has a positive significance in reducing methane emissions and improving feed utilization efficiency. However, the development and functional changes of archaea in the pig intestines have been overlooked for a long time. In this study, 54 fecal samples were collected from 36 parental pigs (18 boars and 18 pregnant/lactating sows), and 108 fecal samples from 18 offspring pigs during lactation, nursery, growing, and finishing stages were tracked and collected for metagenomic sequencing. We obtained 14 archaeal non-redundant metagenome-assembled genomes (MAGs). These archaea were classified as Methanobacteriota and Thermoplasmatota at the phylum level, and Methanobrevibacter, Methanosphaera, MX-02, and UBA71 at the genus level, involving hydrogenotrophic, methylotrophic, and acetoclastic pathways. The hydrogenotrophic pathway dominated the methanogenesis function, and the vast majority of archaea participated in it. Dietary changes profoundly affected the archaeal composition and methanogenesis function in pigs. The abundance of hydrogen-producing bacteria in parental pigs fed high-fiber diets was higher than that in offspring pigs fed low-fiber diets. The methanogenesis function was positively correlated with fiber decomposition functions and negatively correlated with the starch decomposition function. Increased abundance of sulfate reductase and fumarate reductase, as well as decreased acetate/propionate ratio, indicated that the upregulation of alternative hydrogen uptake pathways competing with methanogens may be the reason for the reduced methanogenesis function. These findings contribute to providing information and direction in the pig industry for the development of strategies to reduce methane emissions, improve feed efficiency, and maintain intestinal health.


Assuntos
Archaea , Metano , Animais , Metano/metabolismo , Archaea/genética , Suínos , Fezes/microbiologia , Microbioma Gastrointestinal , Ração Animal/análise , Dieta/veterinária , Feminino , Metagenoma
9.
Adv Mater ; : e2405890, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045923

RESUMO

Mild-hyperthermia photothermal therapy (mPTT) has therapeutic potential with minimized damage to normal tissues. However, the poorly vascularized tumor area severely hampers the penetration of photothermal agents (PTAs), resulting in their heterogeneous distribution and the subsequent heterogeneous local temperature during mPTT. The presence of regions below the therapeutic 42 °C threshold can lead to incomplete tumor ablation and potential recurrence. Additionally, tumor anti-apoptosis and cytoprotection pathways, particularly activated thermoresistance, can nullify mild hyperthermia-induced tumor damage. Therefore, a bioinspired photosensitizer decorated with leucine to form biomimetic nanoclusters (CP-PLeu nanoparticles (NPs)) aimed at achieving rapid and homogeneous accumulation in tumors, is introduced. Moreover, CP-PLeu exhibits photodynamic effects that reverse tumor thermoresistance and physiological repair mechanisms, thereby inhibiting tumor resistance to hyperthermia. With the addition of NIR-II laser irradiation, CP-PLeu optimizes the therapeutic efficacy of mPTT and contributes to a minimally invasive therapeutic process for breast cancer. This therapeutic strategy, utilizing a biomimetic photosensitizer for homogeneous distribution of therapeutic temperature and photoactivated reversal of tumor thermoresistance, successfully achieves efficient breast tumor inhibition through an atraumatic mPTT process.

10.
Imeta ; 3(4): e198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39135685

RESUMO

The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.

11.
Imeta ; 3(1): e160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868506

RESUMO

Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.

12.
Antibiotics (Basel) ; 12(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830097

RESUMO

Antimicrobial host defense peptides (HDPs) are critically important for innate immunity. Small-molecule compounds with the ability to induce HDP synthesis are being actively explored for antimicrobial therapy. To facilitate the discovery of the compounds that specifically activate human ß-defensin 1 (DEFB1) gene transcription, we established a cell-based high-throughput screening assay that employs HT-29/DEFB1-luc, a stable reporter cell line expressing the luciferase gene driven by a 3-Kb DEFB1 gene promoter. A screening of a library of 148 small-molecule epigenetic compounds led to the identification of 28 hits, with a minimum strictly standardized mean difference of 3.0. Fourteen compounds were further selected and confirmed to be capable of inducing DEFB1 mRNA expression in human HT-29 colonic epithelial cells. Desirably, the human cathelicidin antimicrobial peptide (CAMP) gene was also induced by these epigenetic compounds. Benzamide-containing histone deacetylase inhibitors (HDACi) were among the most potent HDP inducers identified in this study. Additionally, several major genes involved in intestinal barrier function, such as claudin-1, claudin-2, tight junction protein 1, and mucin 2, were differentially regulated by HDP inducers. These findings suggest the potential for the development of benzamide-based HDACi as host-directed antimicrobials for infectious disease control and prevention.

13.
Ann Med ; 55(2): 2261477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37774039

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract that co-occurs with gut microbiota dysbiosis; however, its etiology remains unclear. MicroRNA (miRNA)-microbiome interactions play an essential role in host health and disease. METHODS: To investigate the gut microbiome and host miRNA profiles in colitis, we used a Dextran Sulfate Sodium (DSS)-induced ulcerative colitis (UC) model. Metagenomic sequencing and metabolome profiling were performed to explore typical microbiota and metabolite signatures in colitis, whereas mRNA and miRNA sequencing were used to determine differentially expressed miRNAs and their target genes in the inflamed colon. RESULTS: A total of 986 miRNAs were identified between the two groups, with 41 upregulated and 21 downregulated miRNAs in colitis mice compared to the control group. Notably, the target genes of these significantly altered miRNAs were primarily enriched in the immune and inflammation-related pathways. Second, LEfSe analysis revealed bacterial biomarkers distinguishing the two groups, with significantly higher levels of commonly encountered pathogens such as Escherichia coli and Shigella flexneri in the UC group, whereas beneficial species such as Bifidobacterium pseudolongum were more abundant in the control group. Microbiota metabolites histamine, N-acetylhistamine, and glycocholic acid were found to be downregulated in colitis mice. Spearman correlation further revealed the potential crosstalk between the microbiota profile and colonic miRNA, revealing the possibility of microbiome-miRNA interactions involved in IBD development. CONCLUSIONS: Our data reveal the relationships between multi-omic features during UC and suggest that targeting specific miRNAs may provide new avenues for the development of effective miRNA-based therapeutics.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , MicroRNAs , Humanos , Animais , Camundongos , Colite Ulcerativa/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Multiômica , Colite/induzido quimicamente , Colite/genética , Inflamação , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
Animals (Basel) ; 13(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889711

RESUMO

The intestinal microbiota is critically important for animal health and productivity. However, the influence of the intestinal microbiota on animal growth efficiency remains elusive. This current study was aimed at identifying the intestinal bacteria that are associated with the growth rate of broilers in a commercial production setting. Ross 708 broilers with extremely high, medium, and extremely low body weight (BW) were separately selected for each sex from a house of approximately 18,000 chickens on day 42. The cecal content of each animal was subjected to 16S rRNA gene sequencing for microbiota profiling. Our results indicate that a number of bacteria were differentially enriched among different groups of broilers, with several showing a significant correlation (p < 0.05) with BW in both sexes or in a sex-specific manner. Subdoligranulum was drastically diminished in high-BW birds with a strong negative correlation with BW in both males and females. While one Anaerobutyricum strain showed a positive correlation with BW in both sexes, another strain of Anaerobutyricum was positively correlated with BW only in females. These sex-dependent and -independent bacteria could be targeted for improving the growth efficiency and may also be explored as potential biomarkers for the growth rate of broiler chickens.

15.
Anim Biosci ; 36(10): 1517-1529, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37170504

RESUMO

OBJECTIVE: The objective of this study was to investigate the phylogenetic and expression analysis of the angiopoietin-like (ANGPTL) gene family and their role in lipid metabolism in pigs. METHODS: In this study, the amino acid sequence analysis, phylogenetic analysis, and chromosome adjacent gene analysis were performed to identify the ANGPTL gene family in pigs. According to the body weight data from 60 Jinhua pigs, different tissues of 6 pigs with average body weight were used to determine the expression profile of ANGPTL1-8. The ileum, subcutaneous fat, and liver of 8 pigs with distinct fatness were selected to analyze the gene expression of ANGPTL3, ANGPTL4, and ANGPTL8. RESULTS: The sequence length of ANGPTLs in pigs was between 1,186 and 1,991 bp, and the pig ANGPTL family members shared common features with human homologous genes, including the high similarity of the amino acid sequence and chromosome flanking genes. Amino acid sequence analysis showed that ANGPTL1-7 had a highly conserved domain except for ANGPTL8. Phylogenetic analysis showed that each ANGPTL homologous gene shared a common origin. Quantitative reverse-transcription polymerase chain reaction analysis showed that ANGPTL family members had different expression patterns in different tissues. ANGPTL3 and ANGPTL8 were mainly expressed in the liver, while ANGPTL4 was expressed in many other tissues, such as the intestine and subcutaneous fat. The expression levels of ANGPTL3 in the liver and ANGPTL4 in the liver, intestine and subcutaneous fat of Jinhua pigs with low propensity for adipogenesis were significantly higher than those of high propensity for adipogenesis. CONCLUSION: These results increase our knowledge about the biological role of the ANGPTL family in this important economic species, it will also help to better understand the role of ANGPTL3, ANGPTL4, and ANGPTL8 in lipid metabolism of pigs, and provide innovative ideas for developing strategies to improve meat quality of pigs.

16.
Mol Nutr Food Res ; 67(13): e2200884, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183784

RESUMO

SCORE: Probiotics extracellular vesicles (EVs) have shown potential as EV-based nanomaterials therapy for the treatment of inflammatory bowel disease (IBD). Although probiotic Clostridium butyricum has been reported to be protective in various models of intestinal inflammation, the therapeutic effects of C. butyricum-derived extracellular vesicles (CbEVs) in IBD remain to be demonstrated. METHODS AND RESULTS: In this study, multi-omics sequencing is combined with an in vitro model of lipopolysaccharide-induced RAW264.7 cells and an in vivo mouse model of dextran sodium sulfate-induced colitis to explore the regulatory impact and mechanism of CbEVs in ulcerative colitis. Through small RNA sequencing, the study finds that microRNA is involved in the alleviation of colonic inflammation under CbEVs treatment. Mechanistically, CbEVs restore miR-199a-3p expression, interacting with map3k4, and thereby suppress proinflammatory MAPK and NF-κB signaling. Additionally, metagenomic sequencing demonstrate that CbEVs alleviate bacterial dysbiosis in colitis mice and significantly reduces the abundance of the bacterial pathogens Escherichia coli and Shigella flexneri. Furthermore, CbEVs regulate the microbial tryptophan metabolites, which further improve intestinal barrier integrity and inhibit the inflammatory response in colitis mice. CONCLUSION: C. butyricum-derived extracellular vesicles can be a novel agent for the treatment of colitis and miR-199a-3p can be a potential target for IBD treatment.


Assuntos
Clostridium butyricum , Colite Ulcerativa , Colite , Vesículas Extracelulares , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , MicroRNAs , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Clostridium butyricum/genética , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Colo , MicroRNAs/genética , Anti-Inflamatórios , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças
17.
Toxins (Basel) ; 15(6)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37368690

RESUMO

Wheat grains are susceptible to contamination with various natural mycotoxins including regulated and emerging mycotoxins. This study surveyed the natural presence of regulated mycotoxins, such as deoxynivalenol (DON) and zearalenone (ZEN), and emerging mycotoxins such as beauvericin (BEA), enniatins (ENNs such as ENA, ENA1, ENB, ENB1) and Alternaria mycotoxins (i.e., alternariol monomethyl ether (AME), alternariol (AOH), tenuazonic acid (TeA), tentoxin (TEN), and altenuene (ALT)) in wheat grains randomly collected from eight provinces across China in 2021. The results revealed that each wheat grain sample was detected with at least one type of mycotoxin. The detection rates of these mycotoxins ranged from 7.1% to 100%, with the average occurrence level ranging from 1.11 to 921.8 µg/kg. DON and TeA were the predominant mycotoxins with respect to both prevalence and concentration. Approximately 99.7% of samples were found to contain more than one toxin, and the co-occurrence of ten toxins (DON + ZEN + ENA + ENA1 + ENB + ENB1 + AME + AOH + TeA + TEN) was the most frequently detected combination. The dietary exposure to different mycotoxins among Chinese consumers aged 4-70 years was as follows: 0.592-0.992 µg/kg b.w./day for DON, 0.007-0.012 µg/kg b.w./day for ZEN, 0.0003-0.007 µg/kg b.w./day for BEA and ENNs, 0.223-0.373 µg/kg b.w./day for TeA, and 0.025-0.041 µg/kg b.w./day for TEN, which were lower than the health-based guidance values for each mycotoxin, with the corresponding hazard quotient (HQ) being far lower than 1, implying a tolerable health risk for Chinese consumers. However, the estimated dietary exposure to AME and AOH was in the range of 0.003-0.007 µg/kg b.w./day, exceeding the Threshold of Toxicological Concern (TTC) value of 0.0025 µg/kg b.w./day, demonstrating potential dietary risks for Chinese consumers. Therefore, developing practical control and management strategies is essential for controlling mycotoxins contamination in the agricultural systems, thereby ensuring public health.


Assuntos
Micotoxinas , Zearalenona , Micotoxinas/análise , Triticum , Exposição Dietética/efeitos adversos , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem/métodos , Zearalenona/análise , Ácido Tenuazônico/análise , China , Alternaria
18.
Food Funct ; 14(15): 7284-7298, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37470119

RESUMO

Sucrose and fructose are the most commonly used sweeteners in the modern food industry, but there are few comparative studies on the mechanisms by which fructose and sucrose affect host health. The aim of the present study was to explain the different effects of fructose and sucrose on host metabolism from the perspective of gut microbiota. Mice were fed for 16 weeks with normal drinking water (CON), 30% fructose drinking water (CF) and 30% sucrose drinking water (SUC). Compared with fructose treatment, sucrose caused significantly higher weight gain, epididymal fat deposition, hepatic steatosis, and jejunum histological injury. Sucrose increased the abundance of LPS-producing bacteria which was positively correlated with obesity traits, while fructose increased the abundance of Lactobacillus. An in vitro fermentation experiment also showed that fructose increased the abundance of Lactobacillus, while sucrose increased the abundance of Klebsiella and Escherichia. In addition, combined with microbial functional analysis and metabolomics data, fructose led to the enhancement of carbohydrate metabolism and TCA cycle capacity, and increased the production of glutamate. The cross-cooperation network greatly influenced the microbiota (Klebsiella, Lactobacillus), metabolites (glutamate, fructose 1,6-biosphosphate, citric acid), and genes encoding enzymes (pyruvate kinase, 6-phosphofructokinase 1, fructokinase, lactate dehydrogenase, aconitate hydratase, isocitrate dehydrogenase 3), suggesting that they may be the key differential factors in the process of fructose and sucrose catabolism. Therefore, the changes in gut microbiome mediated by fructose and sucrose are important reasons for their differential effects on host health and metabolism.

19.
Anim Microbiome ; 5(1): 55, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941060

RESUMO

BACKGROUND: The dissemination of antibiotic resistance genes (ARGs) poses a substantial threat to environmental safety and human health. Herein, we present a longitudinal paired study across the swine lifetime from birth to market, coupled with metagenomic sequencing to explore the dynamics of ARGs and their health risk in the swine fecal microbiome. RESULTS: We systematically characterized the composition and distribution of ARGs among the different growth stages. In total, 829 ARG subtypes belonging to 21 different ARG types were detected, in which tetracycline, aminoglycoside, and MLS were the most abundant types. Indeed, 134 core ARG subtypes were shared in all stages and displayed a growth stage-associated pattern. Furthermore, the correlation between ARGs, gut microbiota and mobile genetic elements (MGEs) revealed Escherichia coli represented the main carrier of ARGs. We also found that in most cases, the dominant ARGs could be transmitted to progeny piglets, suggesting the potential ARGs generation transmission. Finally, the evaluation of the antibiotic resistance threats provides us some early warning of those high health risk ARGs. CONCLUSIONS: Collectively, this relatively more comprehensive study provides a primary overview of ARG profile in swine microbiome across the lifetime and highlights the health risk and the intergenerational spread of ARGs in pig farm.

20.
Food Chem ; 402: 134487, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36303385

RESUMO

A multi-functional nanoflares biosensor of spherical gold nanoparticle (Au NP) modified by fluorophore-labeled oligonucleotides (ONS) was designed for ultra-sensitive multi-target mycotoxin analysis in food. Au NP was densely modified with multiplex highly oriented hairpins of oligonucleotides (ONS), each ONS was hybridized to a reporter with a distinct fluorophore label and specifically affiliative to its corresponding mycotoxin target. The fluorescent signals of reporters were pre-quenched by Au NP based on ONS hairpin structures and recovered when exposed to ONS's targets. Excitation-emission matrix (EEM) fluorescence detection was performed in EX and EM wavelength of 200-800 nm. Heavily overlapping spectra of fluorophores, mycotoxins and backgrounds were resolved by alternative trilinear decomposition (ATLD) algorithm, pure spectra of specific fluorophore responding to mycotoxin target can be extracted out for quantitative analysis. Four mycotoxins (Aflatoxin B1, zearalenone, Fumonisins B1, ochratoxin A) were simultaneously quantified at extremely low level with limit of detection <0.02 µg kg-1, the average recovery accuracies were higher than 91.7 % in various matrices of cereals, nuts, edible oils. This study realized an important breakthrough of the application of nanoflares biosensor and maybe promising to be as an alternative strategy for onsite mycotoxins monitoring of food.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Micotoxinas , Micotoxinas/análise , Ouro/química , Nanopartículas Metálicas/química , Oligonucleotídeos , Contaminação de Alimentos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA