Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 164(2): 537-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24376280

RESUMO

The delivery of proteins instead of DNA into plant cells allows for a transient presence of the protein or enzyme that can be useful for biochemical analysis or genome modifications. This may be of particular interest for genome editing, because it can avoid DNA (transgene) integration into the genome and generate precisely modified "nontransgenic" plants. In this work, we explore direct protein delivery to plant cells using mesoporous silica nanoparticles (MSNs) as carriers to deliver Cre recombinase protein into maize (Zea mays) cells. Cre protein was loaded inside the pores of gold-plated MSNs, and these particles were delivered by the biolistic method to plant cells harboring loxP sites flanking a selection gene and a reporter gene. Cre protein was released inside the cell, leading to recombination of the loxP sites and elimination of both genes. Visual selection was used to select recombination events from which fertile plants were regenerated. Up to 20% of bombarded embryos produced calli with the recombined loxP sites under our experimental conditions. This direct and reproducible technology offers an alternative for DNA-free genome-editing technologies in which MSNs can be tailored to accommodate the desired enzyme and to reach the desired tissue through the biolistic method.


Assuntos
Sítios de Ligação Microbiológicos/genética , Biolística/métodos , Integrases/metabolismo , Espaço Intracelular/metabolismo , Nanopartículas/química , Dióxido de Silício/química , Zea mays/genética , Sequência de Bases , Genoma de Planta/genética , Dados de Sequência Molecular , Nanopartículas/ultraestrutura , Células Vegetais/metabolismo , Porosidade , Recombinação Genética
2.
Plant J ; 61(1): 176-87, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19811621

RESUMO

The liguleless locus (liguleless1) was chosen for demonstration of targeted mutagenesis in maize using an engineered endonuclease derived from the I-CreI homing endonuclease. A single-chain endonuclease, comprising a pair of I-CreI monomers fused into a single polypeptide, was designed to recognize a target sequence adjacent to the LIGULELESS1 (LG1) gene promoter. The endonuclease gene was delivered to maize cells by Agrobacterium-mediated transformation of immature embryos, and transgenic T(0) plants were screened for mutations introduced at the liguleless1 locus. We found mutations at the target locus in 3% of the T(0) plants, each of which was regenerated from independently selected callus. Plants that were monoallelic, biallelic and chimeric for mutations at the liguleless1 locus were found. Relatively short deletions (shortest 2 bp, longest 220 bp) were most frequently identified at the expected cut site, although short insertions were also detected at this site. We show that rational re-design of an endonuclease can produce a functional enzyme capable of introducing double-strand breaks at selected chromosomal loci. In combination with DNA repair mechanisms, the system produces targeted mutations with sufficient frequency that dedicated selection for such mutations is not required. Re-designed homing endonucleases are a useful molecular tool for introducing targeted mutations in a living organism, specifically a maize plant.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Mutagênese/genética , Zea mays/genética , Enzimas de Restrição do DNA/genética , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/genética
3.
Plant Mol Biol ; 70(6): 669-79, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19466565

RESUMO

We have demonstrated that targeted mutagenesis can be accomplished in maize plants by excision, activation, and subsequent elimination of an endonuclease in the progeny of genetic crosses. The yeast FLP/FRT site-specific recombination system was used to excise and transiently activate the previously integrated yeast I-SceI homing endonuclease in maize zygotes and/or developing embryos. An artificial I-SceI recognition sequence integrated into genomic DNA was analyzed for mutations to indicate the I-SceI endonuclease activity. Targeted mutagenesis of the I-SceI site occurred in about 1% of analyzed F1 plants. Short deletions centered on the I-SceI-produced double-strand break were the predominant genetic lesions observed in the F1 plants. The I-SceI expression cassette was not detected in the mutant F1 plants and their progeny. However, the original mutations were faithfully transmitted to the next generation indicating that the mutations occurred early during the F1 plant development. The procedure offers simultaneous production of double-strand breaks and delivery of DNA template combined with a large number of progeny plants for future gene targeting experiments.


Assuntos
Mutagênese , Zea mays/genética , Sequência de Bases , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla , Sondas de DNA/genética , DNA Bacteriano/genética , DNA de Plantas/genética , DNA Recombinante/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Expressão Gênica , Marcação de Genes , Genes Fúngicos , Vetores Genéticos , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Zea mays/embriologia , Zea mays/metabolismo
4.
Plant Biotechnol J ; 6(8): 770-81, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18627532

RESUMO

SUMMARY: The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.


Assuntos
DNA Nucleotidiltransferases/genética , Integrases/genética , Proteínas Recombinantes de Fusão/genética , Recombinação Genética , Zea mays/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA de Plantas/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Vetores Genéticos , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plasmídeos , Reação em Cadeia da Polimerase , Sementes/genética , Especificidade por Substrato
5.
Plant Biotechnol J ; 4(3): 345-57, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-17147640

RESUMO

DNA recombination reactions (site-specific and homologous) were monitored in the progeny of transgenic maize plants by bringing together two recombination substrates (docking sites and shuttle vectors) in the zygotes. In one combination of transgenic events, the recombination marker gene (yellow fluorescent protein gene, YFP) was activated in 1%-2% of the zygotes receiving both substrates. In other crosses, chimeric embryos and plants were identified, indicative of late recombination events taking place after the first mitotic division of the zygotes. The docking site structure remained unchanged; therefore, all recovered recombination events were classified as gene conversions. The recombinant YFP-r gene segregated as a single locus in subsequent generations. The recombination products showed evidence of homologous recombination at the 5' end of the YFP marker gene and recombinational rearrangements at the other end, consistent with the conclusion that DNA replication was involved in generation of the recombination products. Here, we demonstrate that maize zygotes are efficient at generating homologous recombination products and that the homologous recombination pathways may successfully compete with other possible DNA repair/recombination mechanisms such as site-specific recombination. These results indicate that maize zygotes provide a permissive environment for homologous recombination, offering a new strategy for gene targeting in maize.


Assuntos
DNA Nucleotidiltransferases/metabolismo , Conversão Gênica , Integrases/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Recombinação Genética , Zea mays/genética , Sítios de Ligação Microbiológicos , Cruzamentos Genéticos , DNA Nucleotidiltransferases/genética , Marcação de Genes , Marcadores Genéticos , Vetores Genéticos , Integrases/genética , Proteínas Luminescentes/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/embriologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/embriologia
6.
Gene ; 339: 25-37, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15363843

RESUMO

Three ASF/SF2-like alternative splicing genes from maize were identified, cloned, and analyzed. Each of these genes (zmSRp30, zmSRp31, and zmSRp32) contains two RNA binding domains, a signature sequence SWQDLKD, and a characteristic serine/ariginine-rich domain. There is a strong structural similarity to the human ASF/SF2 splicing factor and to the Arabidopsis atSRp34/p30 proteins. Similar to ASF/SF2-like genes in other organisms, the maize pre-mRNA messages are alternatively spliced. They are differentially expressed in maize tissues with relatively uniform levels of zmSRp30 and zmSRp31 messages being observed throughout the plant, while zmSRp32 messages preferentially accumulated in the meristematic regions. Overexpression of zmSRp32 in maize cells leads to the enhanced selection of weak 5' intron splice sites during the processing of pre-mRNA molecules. Overexpression of the zmSRp31 or zmSRp32 gene affects regulation of wheat dwarf virus rep gene pre-mRNA splicing, presumably by interacting with the weak 5' splice site, CCGU. Our results suggest that the described genes are functional homologues of the human ASF/SF2 alternative splicing factor and they indicate a diversity of the ASF/SF2-like alternative splicing factors in monocot plant cells.


Assuntos
Processamento Alternativo , Proteínas de Plantas/genética , Precursores de RNA/genética , Proteínas de Ligação a RNA/genética , Zea mays/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia , Isoformas de Proteínas/genética , Precursores de RNA/metabolismo , Splicing de RNA , Sementes/genética , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transcrição Gênica , Zea mays/embriologia
7.
Methods Mol Biol ; 847: 399-416, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22351025

RESUMO

Double-strand breaks are very potent inducers of DNA recombination. There is no recombination between DNA molecules unless one or two DNA strands are broken. It has become feasible to introduce double-strand breaks at specific chromosomal loci by using dedicated, redesigned endonucleases with altered DNA-binding specificities. Such breaks are mainly repaired by error-prone nonhomologous recombination pathways in somatic cells, thus frequently producing mutations at the preselected chromosomal sites. Although the art and science of reengineering protein properties have been advancing quickly, an empirical validation of new endonucleases in a particular experimental environment is essential for successful targeted mutagenesis experiments. This chapter presents methods that were developed for a comprehensive evaluation of the DNA-binding and DNA-cutting activities of homing endonucleases in maize cells; however, they can be adopted for similar evaluation studies of other endonucleases and other plant species that are amenable for Agrobacterium-mediated transformation.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA de Plantas/genética , Endonucleases/genética , Endonucleases/metabolismo , Zea mays/genética , Agrobacterium/genética , Reparo do DNA , DNA de Plantas/química , DNA de Plantas/metabolismo , Engenharia Genética , Mutagênese , Mutação , Plantas Geneticamente Modificadas/genética , Recombinação Genética
8.
Plant J ; 33(1): 149-59, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12943549

RESUMO

T-DNA recombination and replication was analyzed in 'black mexican sweet' (BMS) cells transformed with T-DNAs containing the replication system from wheat dwarf virus (WDV). Upon recombination between the T-DNA ends, a promoterless marker gene (gusA) was activated. Activation of the recombination marker gene was delayed and increased exponentially over time, suggesting that recombination and amplification of the T-DNA occurred in maize cells. Mutant versions of the viral initiator gene (rep), known to be defective in the replication function, failed to generate recoverable recombinant T-DNA molecules. Circularization of T-DNA by the FLP/FRT site-specific recombination system and/or homologous recombination was not necessary to recover circular T-DNAs. However, replicating T-DNAs appeared to be suitable substrates for site-specific and homologous recombination. Among 33 T-DNA border junctions sequenced, only one pair of identical junction sites was found implying that the population of circular T-DNAs was highly heterogenous. Since no circular T-DNA molecules were detected in treatments without rep, it suggested that T-DNA recombination was linked to replication and might have been stimulated by this process. The border junctions observed in recombinant T-DNA molecules were indicative of illegitimate recombination and were similar to left-border recombination of T-DNA into the genome after Agro-mediated plant transformation. However, recombination between T-DNA molecules differed from T-DNA/genomic DNA junction sites in that few intact right borders were observed. The replicating T-DNA molecules did not enhance genomic random integration of T-DNA in the experimental configuration used for this study.


Assuntos
Replicação do DNA/genética , DNA Bacteriano/genética , Recombinação Genética/genética , Zea mays/genética , Agrobacterium tumefaciens/genética , Células Cultivadas , DNA de Cadeia Simples/genética , Escherichia coli/genética , Glucuronidase/genética , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA