Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Neurobiol Dis ; 182: 106140, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120095

RESUMO

The rare A673T variant was the first variant found within the amyloid precursor protein (APP) gene conferring protection against Alzheimer's disease (AD). Thereafter, different studies have discovered that the carriers of the APP A673T variant show reduced levels of amyloid beta (Aß) in the plasma and better cognitive performance at high age. Here, we analyzed cerebrospinal fluid (CSF) and plasma of APP A673T carriers and control individuals using a mass spectrometry-based proteomics approach to identify differentially regulated targets in an unbiased manner. Furthermore, the APP A673T variant was introduced into 2D and 3D neuronal cell culture models together with the pathogenic APP Swedish and London mutations. Consequently, we now report for the first time the protective effects of the APP A673T variant against AD-related alterations in the CSF, plasma, and brain biopsy samples from the frontal cortex. The CSF levels of soluble APPß (sAPPß) and Aß42 were significantly decreased on average 9-26% among three APP A673T carriers as compared to three well-matched controls not carrying the protective variant. Consistent with these CSF findings, immunohistochemical assessment of cortical biopsy samples from the same APP A673T carriers did not reveal Aß, phospho-tau, or p62 pathologies. We identified differentially regulated targets involved in protein phosphorylation, inflammation, and mitochondrial function in the CSF and plasma samples of APP A673T carriers. Some of the identified targets showed inverse levels in AD brain tissue with respect to increased AD-associated neurofibrillary pathology. In 2D and 3D neuronal cell culture models expressing APP with the Swedish and London mutations, the introduction of the APP A673T variant resulted in lower sAPPß levels. Concomitantly, the levels of sAPPα were increased, while decreased levels of CTFß and Aß42 were detected in some of these models. Our findings emphasize the important role of APP-derived peptides in the pathogenesis of AD and demonstrate the effectiveness of the protective APP A673T variant to shift APP processing towards the non-amyloidogenic pathway in vitro even in the presence of two pathogenic mutations.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Heterozigoto , Encéfalo/metabolismo
2.
Neurobiol Dis ; 163: 105603, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954322

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, which is neuropathologically characterized by extracellular senile plaques containing amyloid-ß and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. Previous studies have suggested a role for septin (SEPTIN) protein family members in AD-associated cellular processes. Here, we elucidated the potential role of presynaptic SEPTIN5 protein and its post-translational modifications in the molecular pathogenesis of AD. RNA and protein levels of SEPTIN5 showed a significant decrease in human temporal cortex in relation to the increasing degree of AD-related neurofibrillary pathology. Conversely, an increase in the phosphorylation of the functionally relevant SEPTIN5 phosphorylation site S327 was observed already in the early phases of AD-related neurofibrillary pathology, but not in the cerebrospinal fluid of individuals fulfilling the criteria for mild cognitive impairment due to AD. According to the mechanistic assessments, a link between SEPTIN5 S327 phosphorylation status and the effects of SEPTIN5 on amyloid precursor protein processing and markers of autophagy was discovered in mouse primary cortical neurons transduced with lentiviral constructs encoding wild type SEPTIN5 or SEPTIN5 phosphomutants (S327A and S327D). C57BL/6 J mice intrahippocampally injected with lentiviral wild type SEPTIN5 or phosphomutant constructs did not show changes in cognitive performance after five to six weeks from the start of injections. However, SEPTIN5 S327 phosphorylation status was linked to changes in short-term synaptic plasticity ex vivo at the CA3-CA1 synapse. Collectively, these data suggest that SEPTIN5 and its S327 phosphorylation status play a pivotal role in several cellular processes relevant for AD.


Assuntos
Hipocampo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Septinas/metabolismo , Sinapses/metabolismo , Animais , Autofagia/fisiologia , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Camundongos , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Sinapses/patologia
3.
Neuroimage ; 234: 117987, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33762218

RESUMO

Isoflurane, the most commonly used preclinical anesthetic, induces brain plasticity and long-term cellular and molecular changes leading to behavioral and/or cognitive consequences. These changes are most likely associated with network-level changes in brain function. To elucidate the mechanisms underlying long-term effects of isoflurane, we investigated the influence of a single isoflurane exposure on functional connectivity, brain electrical activity, and gene expression. Male Wistar rats (n = 22) were exposed to 1.8% isoflurane for 3 h. Control rats (n = 22) spent 3 h in the same room without exposure to anesthesia. After 1 month, functional connectivity was evaluated with resting-state functional magnetic resonance imaging (fMRI; n = 6 + 6) and local field potential measurements (n = 6 + 6) in anesthetized animals. A whole genome expression analysis (n = 10+10) was also conducted with mRNA-sequencing from cortical and hippocampal tissue samples. Isoflurane treatment strengthened thalamo-cortical and hippocampal-cortical functional connectivity. Cortical low-frequency fMRI power was also significantly increased in response to the isoflurane treatment. The local field potential results indicating strengthened hippocampal-cortical alpha and beta coherence were in good agreement with the fMRI findings. Furthermore, altered expression was found in 20 cortical genes, several of which are involved in neuronal signal transmission, but no gene expression changes were noted in the hippocampus. Isoflurane induced prolonged changes in thalamo-cortical and hippocampal-cortical function and expression of genes contributing to signal transmission in the cortex. Further studies are required to investigate whether these changes are associated with the postoperative behavioral and cognitive symptoms commonly observed in patients and animals.


Assuntos
Anestésicos Inalatórios/administração & dosagem , Encéfalo/diagnóstico por imagem , Isoflurano/administração & dosagem , Imageamento por Ressonância Magnética/tendências , Rede Nervosa/diagnóstico por imagem , Plasticidade Neuronal/efeitos dos fármacos , Anestésicos Inalatórios/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Isoflurano/toxicidade , Masculino , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Fatores de Tempo
4.
Neurobiol Dis ; 124: 454-468, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30557660

RESUMO

No single-omic approach completely elucidates the multitude of alterations taking place in Alzheimer's disease (AD). Here, we coupled transcriptomic and phosphoproteomic approaches to determine the temporal sequence of changes in mRNA, protein, and phosphopeptide expression levels from human temporal cortical samples, with varying degree of AD-related pathology. This approach highlighted fluctuation in synaptic and mitochondrial function as the earliest pathological events in brain samples with AD-related pathology. Subsequently, increased expression of inflammation and extracellular matrix-associated gene products was observed. Interaction network assembly for the associated gene products, emphasized the complex interplay between these processes and the role of addressing post-translational modifications in the identification of key regulators. Additionally, we evaluate the use of decision trees and random forests in identifying potential biomarkers differentiating individuals with different degree of AD-related pathology. This multiomic and temporal sequence-based approach provides a better understanding of the sequence of events leading to AD.


Assuntos
Doença de Alzheimer/patologia , Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Humanos , Biologia de Sistemas/métodos
5.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31065832

RESUMO

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Tauopatias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Memória Espacial/fisiologia , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética
6.
J Cell Sci ; 129(11): 2224-38, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084579

RESUMO

Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease. A central step in the generation of toxic amyloid-ß (Aß) peptides is the cleavage of amyloid precursor protein (APP) by ß-site APP-cleaving enzyme (BACE1). Here, we have elucidated whether downregulation of septin (SEPT) protein family members, which are implicated in synaptic plasticity and vesicular trafficking, affects APP processing and Aß generation. SEPT8 was found to reduce soluble APPß and Aß levels in neuronal cells through a post-translational mechanism leading to decreased levels of BACE1 protein. In the human temporal cortex, we identified alterations in the expression of specific SEPT8 transcript variants in a manner that correlated with Alzheimer's-disease-related neurofibrillary pathology. These changes were associated with altered ß-secretase activity. We also discovered that the overexpression of a specific Alzheimer's-disease-associated SEPT8 transcript variant increased the levels of BACE1 and Aß peptides in neuronal cells. These changes were related to an increased half-life of BACE1 and the localization of BACE1 in recycling endosomes. These data suggest that SEPT8 modulates ß-amyloidogenic processing of APP through a mechanism affecting the intracellular sorting and accumulation of BACE1.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Processamento de Proteína Pós-Traducional , Septinas/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Perfilação da Expressão Gênica , Células HEK293 , Meia-Vida , Hipocampo/patologia , Humanos , Espaço Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Estabilidade Proteica , Transporte Proteico , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Septinas/genética , Lobo Temporal/metabolismo , Lobo Temporal/patologia
7.
J Neuroinflammation ; 14(1): 215, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29115990

RESUMO

BACKGROUND: DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer's disease. METHODS: Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. RESULTS: Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. CONCLUSIONS: These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo.


Assuntos
Inflamação/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular/fisiologia , Técnicas de Cocultura , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Inflamação/patologia , Masculino , Camundongos , Microglia/metabolismo , Neurônios/patologia
8.
Neurobiol Dis ; 85: 187-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563932

RESUMO

Accumulation of ß-amyloid (Aß) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aß is generated from amyloid precursor protein (APP) by ß-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aß pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aß40 and Aß42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aß accumulation.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Técnicas de Cocultura , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo
9.
Biochemistry ; 52(22): 3899-912, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23663107

RESUMO

Ubiquilin-1 is an Alzheimer's disease-associated protein, which is known to modulate amyloid precursor protein (APP) processing, amyloid-ß (Aß) secretion, and presenilin-1 (PS1) accumulation. Here, we aim to elucidate the molecular mechanisms by which full-length transcript variant 1 of ubiquilin-1 (TV1) affects APP processing and γ-secretase function in human neuroblastoma cells stably overexpressing APP (SH-SY5Y-APP751). We found that TV1 overexpression significantly increased the level of APP intracellular domain (AICD) generation. However, there was no increase in the levels of secreted Aß40, Aß42, or total Aß, suggesting that ubiquilin-1 in particular enhances γ-secretase-mediated ε-site cleavage. This is supported by the finding that TV1 also significantly increased the level of intracellular domain generation of another γ-secretase substrate, leukocyte common antigen-related (LAR) phosphatase. However, in these cells, the increase in AICD levels was abolished, suggesting a preference of the γ-secretase for LAR over APP. TV2, another ubiquilin-1 variant that lacks the protein fragment encoded by exon 8, did not increase the level of AICD generation like TV1 did. The subcellular and plasma membrane localization of APP or γ-secretase complex components PS1 and nicastrin was not altered in TV1-overexpressing cells. Moreover, the effects of TV1 were not mediated by altered expression or APP binding of FE65, an adaptor protein thought to regulate AICD generation and stability. These data suggest that ubiquilin-1 modulates γ-secretase-mediated ε-site cleavage and thus may play a role in regulating γ-secretase cleavage of various substrates.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/biossíntese , Proteínas de Ciclo Celular/biossíntese , Linhagem Celular Tumoral , Humanos , Fragmentos de Peptídeos/biossíntese , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/biossíntese , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/efeitos dos fármacos
10.
Cells ; 12(10)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37408256

RESUMO

Organotypic slice culture models surpass conventional in vitro methods in many aspects. They retain all tissue-resident cell types and tissue hierarchy. For studying multifactorial neurodegenerative diseases such as tauopathies, it is crucial to maintain cellular crosstalk in an accessible model system. Organotypic slice cultures from postnatal tissue are an established research tool, but adult tissue-originating systems are missing, yet necessary, as young tissue-originating systems cannot fully model adult or senescent brains. To establish an adult-originating slice culture system for tauopathy studies, we made hippocampal slice cultures from transgenic 5-month-old hTau.P301S mice. In addition to the comprehensive characterization, we set out to test a novel antibody for hyperphosphorylated TAU (pTAU, B6), with and without a nanomaterial conjugate. Adult hippocampal slices retained intact hippocampal layers, astrocytes, and functional microglia during culturing. The P301S-slice neurons expressed pTAU throughout the granular cell layer and secreted pTAU to the culture medium, whereas the wildtype slices did not. Additionally, cytotoxicity and inflammation-related determinants were increased in the P301S slices. Using fluorescence microscopy, we showed target engagement of the B6 antibody to pTAU-expressing neurons and a subtle but consistent decrease in intracellular pTAU with the B6 treatment. Collectively, this tauopathy slice culture model enables measuring the extracellular and intracellular effects of different mechanistic or therapeutic manipulations on TAU pathology in adult tissue without the hindrance of the blood-brain barrier.


Assuntos
Tauopatias , Camundongos , Animais , Tauopatias/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo
11.
J Cell Mol Med ; 16(11): 2754-67, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22805236

RESUMO

Alzheimer's disease (AD) and cerebral ischaemia share similar features in terms of altered amyloid precursor protein (APP) processing and ß-amyloid (Aß) accumulation. We have previously shown that Aß and calcium deposition, and ß-secretase activity, are robustly increased in the ipsilateral thalamus after transient middle cerebral artery occlusion (MCAO) in rats. Here, we investigated whether the non-selective calcium channel blocker bepridil, which also inhibits ß-secretase cleavage of APP, affects thalamic accumulation of Aß and calcium and in turn influences functional recovery in rats subjected to MCAO. A 27-day bepridil treatment (50 mg/kg, p.o.) initiated 2 days after MCAO significantly decreased the levels of soluble Aß40, Aß42 and calcium in the ipsilateral thalamus, as compared with vehicle-treated MCAO rats. Expression of seladin-1/DHCR24 protein, which is a potential protective factor against neuronal damage, was decreased at both mRNA and protein levels in the ipsilateral thalamus of MCAO rats. Conversely, bepridil treatment restored seladin-1/DHCR24 expression in the ipsilateral thalamus. Bepridil treatment did not significantly affect heme oxygenase-1- or NAD(P)H quinone oxidoreductase-1-mediated oxidative stress or inflammatory responses in the ipsilateral thalamus of MCAO rats. Finally, bepridil treatment mitigated MCAO-induced alterations in APP processing in the ipsilateral thalamus and improved contralateral forelimb use in MCAO rats. These findings suggest that bepridil is a plausible therapeutic candidate in AD or stroke owing to its multifunctional role in key cellular events that are relevant for the pathogenesis of these diseases.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Bepridil/farmacologia , Cálcio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Tálamo/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Heme Oxigenase-1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ratos , Ratos Wistar , Tálamo/efeitos dos fármacos
12.
J Cell Mol Med ; 16(6): 1206-22, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21762376

RESUMO

According to epidemiological studies, type-2 diabetes increases the risk of Alzheimer's disease. Here, we induced hyperglycaemia in mice overexpressing mutant amyloid precursor protein and presenilin-1 (APdE9) either by cross-breeding them with pancreatic insulin-like growth factor 2 (IGF-2) overexpressing mice or by feeding them with high-fat diet. Glucose and insulin tolerance tests revealed significant hyperglycaemia in mice overexpressing IGF-2, which was exacerbated by high-fat diet. However, sustained hyperinsulinaemia and insulin resistance were observed only in mice co-expressing IGF-2 and APdE9 without correlation to insulin levels in brain. In behavioural tests in aged mice, APdE9 was associated with poor spatial learning and the combination of IGF-2 and high-fat diet further impaired learning. Neither high-fat diet nor IGF-2 increased ß-amyloid burden in the brain. In male mice, IGF-2 increased ß-amyloid 42/40 ratio, which correlated with poor spatial learning. In contrast, inhibitory phosphorylation of glycogen synthase kinase 3ß, which correlated with good spatial learning, was increased in APdE9 and IGF-2 female mice on standard diet, but not on high-fat diet. Interestingly, high-fat diet altered τ isoform expression and increased phosphorylation of τ at Ser202 site in female mice regardless of genotype. These findings provide evidence for new regulatory mechanisms that link type-2 diabetes and Alzheimer pathology.


Assuntos
Doença de Alzheimer/genética , Dieta Hiperlipídica , Resistência à Insulina/genética , Presenilina-1/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Feminino , Teste de Tolerância a Glucose , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hibridização Genética , Hiperglicemia/genética , Hiperglicemia/patologia , Insulina/sangue , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Fosforilação , Presenilina-1/metabolismo , Transdução de Sinais
13.
J Clin Med ; 10(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800840

RESUMO

Leucine-rich-alpha-2-glykoprotein (LRG) is suggested as a potential biomarker for idiopathic normal pressure hydrocephalus (iNPH). Our goal was to compare the cerebrospinal fluid (CSF) LRG levels between 119 iNPH patients and 33 age-matched controls and with the shunt responses and the brain biopsy Alzheimer's disease (AD) pathology among the iNPH patients. CSF LRG, Aß1-42, P-tau181, and T-tau were measured by using commercial ELISAs. The LRG levels in the CSF were significantly increased in the iNPH patients (p < 0.001) as compared to the controls, regardless of the AD pathology. However, CSF LRG did not correlate with the shunt response in contrast to the previous findings. The CSF AD biomarkers, i.e., Aß1-42, T-tau, and P-tau correlated with the brain biopsy AD pathology as expected but were systematically lower in the iNPH patients when compared to the controls (<0.001). Our findings support that the LRG levels in the CSF are potentially useful for the diagnostics of iNPH, independent of the brain AD pathology, but contrary to previous findings, not for predicting the shunt response. Our findings also suggest a need for specific reference values of the CSF AD biomarkers for the diagnostics of comorbid AD pathology in the iNPH patients.

14.
Cells ; 10(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918872

RESUMO

Methyl-CpG-binding protein 2 (MECP2) is a critical transcriptional regulator for synaptic function. Dysfunction of synapses, as well as microglia-mediated neuroinflammation, represent the earliest pathological events in Alzheimer's disease (AD). Here, expression, protein levels, and activity-related phosphorylation changes of MECP2 were analyzed in post-mortem human temporal cortex. The effects of wild type and phosphorylation-deficient MECP2 variants at serine 423 (S423) or S80 on microglial and neuronal function were assessed utilizing BV2 microglial monocultures and co-cultures with mouse cortical neurons under inflammatory stress conditions. MECP2 phosphorylation at the functionally relevant S423 site nominally decreased in the early stages of AD-related neurofibrillary pathology in the human temporal cortex. Overexpression of wild type MECP2 enhanced the pro-inflammatory response in BV2 cells upon treatment with lipopolysaccharide (LPS) and interferon-γ (IFNγ) and decreased BV2 cell phagocytic activity. The expression of the phosphorylation-deficient MECP2-S423A variant, but not S80A, further increased the pro-inflammatory response of BV2 cells. In neurons co-cultured with BV2 cells, the MECP2-S423A variant increased the expression of several genes, which are important for the maintenance and protection of neurons and synapses upon inflammatory stress. Collectively, functional analyses in different cellular models suggest that MECP2 may influence the inflammatory response in microglia independently of S423 and S80 phosphorylation, while the S423 phosphorylation might play a role in the activation of neuronal gene expression, which conveys neuroprotection under neuroinflammation-related stress.


Assuntos
Regulação da Expressão Gênica , Inflamação/patologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosfosserina/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Técnicas de Cocultura , Interferon gama , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Fagocitose , Fosforilação , Transcrição Gênica , Zimosan
15.
J Biol Chem ; 284(49): 34433-43, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19815556

RESUMO

Seladin-1 is a neuroprotective protein selectively down-regulated in brain regions affected in Alzheimer disease (AD). Seladin-1 protects cells against beta-amyloid (Abeta) peptide 42- and oxidative stress-induced apoptosis activated by caspase-3, a key mediator of apoptosis. Here, we have employed RNA interference to assess the molecular effects of seladin-1 down-regulation on the beta-secretase (BACE1) function and beta-amyloid precursor protein (APP) processing in SH-SY5Y human neuroblastoma cells in both normal and apoptotic conditions. Our results show that approximately 60% reduction in seladin-1 protein levels, resembling the decrease observed in AD brain, did not significantly affect APP processing or Abeta secretion in normal growth conditions. However, under apoptosis, seladin-1 small interfering RNA (siRNA)-transfected cells showed increased caspase-3 activity on average by 2-fold when compared with control siRNA-transfected cells. Increased caspase-3 activity coincided with a significant depletion of the BACE1-sorting protein, GGA3 (Golgi-localized gamma-ear-containing ADP-ribosylation factor-binding protein), and subsequently augmented BACE1 protein levels and activity. Augmented BACE1 activity in turn correlated with the enhanced beta-amyloidogenic processing of APP and ultimately increased Abeta production. These adverse changes associated with decreased cell viability in seladin-1 siRNA-transfected cells under apoptosis. No changes in GGA3 or BACE1 levels were found after seladin-1 knockdown in normal growth conditions. Collectively, our results suggest that under stress conditions, reduced seladin-1 expression results in enhanced GGA3 depletion, which further leads to augmented post-translational stabilization of BACE1 and increased beta-amyloidogenic processing of APP. These mechanistic findings related to seladin-1 down-regulation are important in the context of AD as the oxidative stress-induced apoptosis plays a key role in the disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/biossíntese , Apoptose , Ácido Aspártico Endopeptidases/biossíntese , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Peptídeos beta-Amiloides/química , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Regulação para Baixo , Humanos , Microscopia Confocal/métodos , Modelos Biológicos , Estresse Oxidativo , Estrutura Terciária de Proteína , Transfecção
16.
Front Neurol ; 11: 550140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123074

RESUMO

Hexanucleotide repeat expansion (HRE) in the chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause underpinning frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). It leads to the accumulation of toxic RNA foci and various dipeptide repeat (DPR) proteins into cells. These C9orf72 HRE-specific hallmarks are abundant in neurons. So far, the role of microglia, the immune cells of the brain, in C9orf72 HRE-associated FTLD/ALS is unclear. In this study, we overexpressed C9orf72 HRE of a pathological length in the BV-2 microglial cell line and used biochemical methods and fluorescence imaging to investigate its effects on their phenotype, viability, and functionality. We found that BV-2 cells expressing the C9orf72 HRE presented strong expression of specific DPR proteins but no sense RNA foci. Transiently increased levels of cytoplasmic TAR DNA-binding protein 43 (TDP-43), slightly altered levels of p62 and lysosome-associated membrane protein (LAMP) 2A, and reduced levels of polyubiquitinylated proteins, but no signs of cell death were detected in HRE overexpressing cells. Overexpression of the C9orf72 HRE did not affect BV-2 cell phagocytic activity or response to an inflammatory stimulus, nor did it shift their RNA profile toward disease-associated microglia. These findings suggest that DPR proteins do not affect microglial cell viability or functionality in BV-2 cells. However, additional studies in other models are required to further elucidate the role of C9orf72 HRE in microglia.

17.
Mol Neurodegener ; 15(1): 52, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917267

RESUMO

BACKGROUND: Microglia-specific genetic variants are enriched in several neurodegenerative diseases, including Alzheimer's disease (AD), implicating a central role for alterations of the innate immune system in the disease etiology. A rare coding variant in the PLCG2 gene (rs72824905, p.P522R) expressed in myeloid lineage cells was recently identified and shown to reduce the risk for AD. METHODS: To assess the role of the protective variant in the context of immune cell functions, we generated a Plcγ2-P522R knock-in (KI) mouse model using CRISPR/Cas9 gene editing. RESULTS: Functional analyses of macrophages derived from homozygous KI mice and wild type (WT) littermates revealed that the P522R variant potentiates the primary function of Plcγ2 as a Pip2-metabolizing enzyme. This was associated with improved survival and increased acute inflammatory response of the KI macrophages. Enhanced phagocytosis was observed in mouse BV2 microglia-like cells overexpressing human PLCγ2-P522R, but not in PLCγ2-WT expressing cells. Immunohistochemical analyses did not reveal changes in the number or morphology of microglia in the cortex of Plcγ2-P522R KI mice. However, the brain mRNA signature together with microglia-related PET imaging suggested enhanced microglial functions in Plcγ2-P522R KI mice. CONCLUSION: The AD-associated protective Plcγ2-P522R variant promotes protective functions associated with TREM2 signaling. Our findings provide further support for the idea that pharmacological modulation of microglia via TREM2-PLCγ2 pathway-dependent stimulation may be a novel therapeutic option for the treatment of AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Fosfolipase C gama/genética , Animais , Técnicas de Introdução de Genes , Variação Genética , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Fosfolipase C gama/imunologia
18.
Cells ; 9(11)2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203136

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-ß (Aß) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of ß-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aß. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aß in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aß in neuronal cells.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Septinas/metabolismo , Animais , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Endocitose/fisiologia , Humanos , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Proteico/fisiologia , Septinas/genética
19.
Mol Neurodegener ; 15(1): 66, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168021

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease and type 2 diabetes (T2D) plays an important role in conferring the risk for AD. Although AD and T2D share common features, the common molecular mechanisms underlying these two diseases remain elusive. METHODS: Mice with different AD- and/or tauopathy-linked genetic backgrounds (APPswe/PS1dE9, Tau P301L and APPswe/PS1dE9/Tau P301L) were fed for 6 months with standard diet or typical Western diet (TWD). After behavioral and metabolic assessments of the mice, the effects of TWD on global gene expression as well as dystrophic neurite and microglia pathology were elucidated. Consequently, mechanistic aspects related to autophagy, cell survival, phagocytic uptake as well as Trem2/Dap12 signaling pathway, were assessed in microglia upon modulation of PI3K-Akt signaling. To evaluate whether the mouse model-derived results translate to human patients, the effects of diabetic phenotype on microglial pathology were assessed in cortical biopsies of idiopathic normal pressure hydrocephalus (iNPH) patients encompassing ß-amyloid pathology. RESULTS: TWD led to obesity and diabetic phenotype in all mice regardless of the genetic background. TWD also exacerbated memory and learning impairment in APPswe/PS1dE9 and Tau P301L mice. Gene co-expression network analysis revealed impaired microglial responses to AD-related pathologies in APPswe/PS1dE9 and APPswe/PS1dE9/Tau P301L mice upon TWD, pointing specifically towards aberrant microglial functionality due to altered downstream signaling of Trem2 and PI3K-Akt. Accordingly, fewer microglia, which did not show morphological changes, and increased number of dystrophic neurites around ß-amyloid plaques were discovered in the hippocampus of TWD mice. Mechanistic studies in mouse microglia revealed that interference of PI3K-Akt signaling significantly decreased phagocytic uptake and proinflammatory response. Moreover, increased activity of Syk-kinase upon ligand-induced activation of Trem2/Dap12 signaling was detected. Finally, characterization of microglial pathology in cortical biopsies of iNPH patients revealed a significant decrease in the number of microglia per ß-amyloid plaque in obese individuals with concomitant T2D as compared to both normal weight and obese individuals without T2D. CONCLUSIONS: Collectively, these results suggest that diabetic phenotype in mice and humans mechanistically associates with abnormally reduced microglial responses to ß-amyloid pathology and further suggest that AD and T2D share overlapping pathomechanisms, likely involving altered immune function in the brain.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Microglia/patologia , Placa Amiloide/patologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Fenótipo
20.
Neurobiol Dis ; 35(1): 103-13, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19426802

RESUMO

We have previously demonstrated aggregation of amyloid precursor protein (APP) and beta-amyloid (Abeta) to dense plaque-like deposits in the thalamus of rats subjected to transient middle cerebral artery occlusion (MCAO). Here, we investigated the underlying molecular effects of MCAO on APP processing and expression profiles of Abeta degrading enzymes in the cortex adjacent to the infarct (penumbra) and ipsilateral thalamus 2, 7 and 30 days after ischemic insult. Enhanced beta-amyloidogenic processing of APP and altered insulin degrading enzyme and neprilysin expression were observed in the thalamus, but not the penumbral cortex, 7 and 30 days after MCAO coinciding with increased calcium levels and beta-secretase (BACE) activity. Consecutively, increased BACE activity associated with depletion of BACE trafficking protein GGA3, suggesting a post-translational stabilization of BACE. These results demonstrate that focal cerebral ischemia leads to complex pathogenic events in the thalamus long after the initial insult.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/patologia , Tálamo/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Infarto Encefálico/etiologia , Infarto Encefálico/patologia , Cálcio/metabolismo , Caspase 3/metabolismo , Modelos Animais de Doenças , Lateralidade Funcional , Infarto da Artéria Cerebral Média/complicações , Insulisina/genética , Insulisina/metabolismo , Masculino , Neprilisina/genética , Neprilisina/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA