Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Adv Appl Microbiol ; 127: 1-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763526

RESUMO

In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.


Assuntos
Microbiota , Compostos Orgânicos Voláteis , Humanos , Ecossistema , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Nariz Eletrônico , Indústrias
2.
Microb Cell Fact ; 23(1): 181, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890640

RESUMO

BACKGROUND: Volatile compounds are key elements in the interaction and communication between organisms at both interspecific and intraspecific levels. In complex bacterial communities, the emission of these fast-acting chemical messengers allows an exchange of information even at a certain distance that can cause different types of responses in the receiving organisms. The changes in secondary metabolism as a consequence of this interaction arouse great interest in the field of searching for bioactive compounds since they can be used as a tool to activate silenced metabolic pathways. Regarding the great metabolic potential that the Actinobacteria group presents in the production of compounds with attractive properties, we evaluated the reply the emitted volatile compounds can generate in other individuals of the same group. RESULTS: We recently reported that volatile compounds released by different streptomycete species trigger the modulation of biosynthetic gene clusters in Streptomyces spp. which finally leads to the activation/repression of the production of secondary metabolites in the recipient strains. Here we present the application of this rationale in a broader bacterial community to evaluate volatiles as signaling effectors that drive the activation of biosynthesis of bioactive compounds in other members of the Actinobacteria group. Using cocultures of different actinobacteria (where only the volatile compounds reach the recipient strain) we were able to modify the bacterial secondary metabolism that drives overproduction (e.g., granaticins, actiphenol, chromomycins) and/or de novo production (e.g., collismycins, skyllamycins, cosmomycins) of compounds belonging to different chemical species that present important biological activities. CONCLUSIONS: This work shows how the secondary metabolism of different Actinobacteria species can vary significantly when exposed in co-culture to the volatile compounds of other phylum-shared bacteria, these effects being variable depending on strains and culture media. This approach can be applied to the field of new drug discovery to increase the battery of bioactive compounds produced by bacteria that can potentially be used in treatments for humans and animals.


Assuntos
Actinobacteria , Metabolismo Secundário , Compostos Orgânicos Voláteis , Actinobacteria/metabolismo , Actinobacteria/genética , Compostos Orgânicos Voláteis/metabolismo , Streptomyces/metabolismo , Streptomyces/genética , Família Multigênica
3.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397022

RESUMO

Piperazic acid is a cyclic nonproteinogenic amino acid that contains a hydrazine N-N bond formed by a piperazate synthase (KtzT-like). This amino acid, found in bioactive natural products synthesized by non-ribosomal peptide synthetases (NRPSs), confers conformational constraint to peptides, an important feature for their biological activities. Genome mining of Streptomyces strains has been revealed as a strategy to identify biosynthetic gene clusters (BGCs) for potentially active compounds. Moreover, the isolation of new strains from underexplored habitats or associated with other organisms has allowed to uncover new BGCs for unknown compounds. The in-house "Carlos Sialer (CS)" strain collection consists of seventy-one Streptomyces strains isolated from the cuticle of leaf-cutting ants of the tribe Attini. Genomes from twelve of these strains have been sequenced and mined using bioinformatics tools, highlighting their potential to encode secondary metabolites. In this work, we have screened in silico those genomes, using KtzT as a hook to identify BGCs encoding piperazic acid-containing compounds. This resulted in uncovering the new BGC dpn in Streptomyces sp. CS113, which encodes the biosynthesis of the hybrid polyketide-depsipeptide diperamycin. Analysis of the diperamycin polyketide synthase (PKS) and NRPS reveals their functional similarity to those from the aurantimycin A biosynthetic pathway. Experimental proof linking the dpn BGC to its encoded compound was achieved by determining the growth conditions for the expression of the cluster and by inactivating the NRPS encoding gene dpnS2 and the piperazate synthase gene dpnZ. The identity of diperamycin was confirmed by High-Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR) and by analysis of the domain composition of modules from the DpnP PKS and DpnS NRPS. The identification of the dpn BGC expands the number of BGCs that have been confirmed to encode the relatively scarcely represented BGCs for depsipeptides of the azinothricin family of compounds and will facilitate the generation of new-to-nature analogues by combinatorial biosynthesis.


Assuntos
Depsipeptídeos , Piridazinas , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Família Multigênica , Depsipeptídeos/genética , Depsipeptídeos/metabolismo , Aminoácidos/metabolismo
4.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175904

RESUMO

Genome mining using standard bioinformatics tools has allowed for the uncovering of hidden biosynthesis gene clusters for specialized metabolites in Streptomyces genomes. In this work, we have used an alternative approach consisting in seeking "Streptomyces Antibiotic Regulatory Proteins" (SARP) encoding genes and analyzing their surrounding DNA region to unearth cryptic gene clusters that cannot be identified using standard bioinformatics tools. This strategy has allowed the unveiling of the new ahb cluster in Streptomyces argillaceus, which had not been retrieved before using antiSMASH. The ahb cluster is highly preserved in other Streptomyces strains, which suggests a role for their encoding compounds in specific environmental conditions. By combining overexpression of three regulatory genes and generation of different mutants, we were able to activate the ahb cluster, and to identify and chemically characterize the encoded compounds that we have named ahbamycins (AHBs). These constitute a new family of metabolites derived from 3-amino-4-hydroxybenzoate (3,4-AHBA) known for having antibiotic and antitumor activity. Additionally, by overexpressing three genes of the cluster (ahbH, ahbI, and ahbL2) for the synthesis and activation of 3,4-AHBA, a new hybrid compound, AHB18, was identified which had been produced from a metabolic crosstalk between the AHB and the argimycin P pathways. The identification of this new BGC opens the possibility to generate new compounds by combinatorial biosynthesis.


Assuntos
Antibacterianos , Streptomyces , Antibacterianos/química , Fatores de Transcrição/metabolismo , Família Multigênica , Genes Reguladores , Streptomyces/genética , Streptomyces/metabolismo , Hidroxibenzoatos/metabolismo
5.
Appl Environ Microbiol ; 88(1): e0183921, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669429

RESUMO

The improvement of genome sequencing techniques has brought to light the biosynthetic potential of actinomycetes due to the large number of gene clusters they present compared to the number of known compounds. Genome mining is a recent strategy in the search for novel bioactive compounds, which involves the analysis of sequenced genomes to identify uncharacterized natural product biosynthetic gene clusters, many of which are cryptic or silent under laboratory conditions, and to develop experimental approaches to identify their products. Owing to the importance of halogenation in terms of structural diversity, bioavailability, and bioactivity, searching for new halogenated bioactive compounds has become an interesting issue in the field of natural product discovery. Following this purpose, a screening for halogenase coding genes was performed on 12 Streptomyces strains isolated from fungus-growing ants of the Attini tribe. Using the bioinformatics tools antiSMASH and BLAST, six halogenase coding genes were identified. Some of these genes were located within biosynthetic gene clusters (BGCs), which were studied by construction of several mutants for the identification of the putative halogenated compounds produced. The comparison of the metabolite production profile of wild-type strains and their corresponding mutants by ultrahigh-performance liquid chromatography-UV and high-performance liquid chromatography-mass spectrometry allowed us the identification of a novel family of halogenated compounds in Streptomyces sp. strain CS147, designated colibrimycins. IMPORTANCE Genome mining has proven its usefulness in the search for novel bioactive compounds produced by microorganisms, and halogenases comprise an interesting starting point. In this work, we have identified a new halogenase coding gene that led to the discovery of novel lipopetide nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS)-derived natural products, the colibrimycins, produced by Streptomyces sp. strain CS147, isolated from the Attini ant niche. Some colibrimycins display an unusual α-ketoamide moiety in the peptide structure. Although its biosynthetic origin remains unknown, its presence might be related to a hypothetical inhibition of virus proteases, and, together with the presence of the halogenase, it represents a feature to be incorporated in the arsenal of structural modifications available for combinatorial biosynthesis.


Assuntos
Policetídeo Sintases , Streptomyces , Família Multigênica , Peptídeo Sintases/genética , Filogenia , Policetídeo Sintases/genética , Streptomyces/genética
6.
Emerg Infect Dis ; 27(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352085

RESUMO

Invasive fusariosis (IF) is associated with severe neutropenia in patients with concurrent hematologic conditions. We conducted a retrospective observational study to characterize the epidemiology of IF in 18 Spanish hospitals during 2000-2015. In that time, the frequency of IF in nonneutropenic patients increased from 0.08 cases per 100,000 admissions in 2000-2009 to 0.22 cases per 100,000 admissions in 2010-2015. Nonneutropenic IF patients often had nonhematologic conditions, such as chronic cardiac or lung disease, rheumatoid arthritis, history of solid organ transplantation, or localized fusariosis. The 90-day death rate among nonneutropenic patients (28.6%) and patients with resolved neutropenia (38.1%) was similar. However, the death rate among patients with persistent neutropenia (91.3%) was significantly higher. We used a multivariate Cox regression analysis to characterize risk factors for death: persistent neutropenia was the only risk factor for death, regardless of antifungal therapy.


Assuntos
Fusariose , Fusarium , Neutropenia , Antifúngicos/uso terapêutico , Fusariose/tratamento farmacológico , Fusariose/epidemiologia , Humanos , Neutropenia/tratamento farmacológico , Neutropenia/epidemiologia , Estudos Observacionais como Assunto , Espanha/epidemiologia
7.
Angew Chem Int Ed Engl ; 60(24): 13536-13541, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33768597

RESUMO

Brasilicardin A (1) consists of an unusual anti/syn/anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multi-step total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.


Assuntos
Aminoglicosídeos/metabolismo , Engenharia Genética , Imunossupressores/síntese química , Alquil e Aril Transferases/genética , Aminoglicosídeos/síntese química , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imunossupressores/química , Imunossupressores/metabolismo , Imunossupressores/farmacologia , Camundongos , Plasmídeos/genética , Plasmídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Terpenos/química
8.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732573

RESUMO

The appearance of new infectious diseases, the increase in multidrug-resistant bacteria, and the need for more effective chemotherapeutic agents have oriented the interests of researchers toward the search for metabolites with novel or improved bioactivities. Sipanmycins are disaccharyl glycosylated macrolactams that exert antibiotic and cytotoxic activities. By applying combinatorial biosynthesis and mutasynthesis approaches, we have generated eight new members of the sipanmycin family. The introduction of plasmids harboring genes responsible for the biosynthesis of several deoxysugars into sipanmycin-producing Streptomyces sp. strain CS149 led to the production of six derivatives with altered glycosylation patterns. After structural elucidation of these new metabolites, we conclude that some of these sugars are the result of the combination of the enzymatic machinery encoded by the introduced plasmids and the native enzymes of the d-sipanose biosynthetic pathway of the wild-type CS149 strain. In addition, two analogues of the parental compounds with a modified polyketide backbone were generated by a mutasynthesis approach, feeding cultures of a mutant strain defective in sipanmycin biosynthesis with 3-aminopentanoic acid. The generation of new sipanmycin analogues shown in this work relied on the substrate flexibility of key enzymes involved in sipanmycin biosynthesis, particularly the glycosyltransferase pair SipS9/SipS14 and enzymes SipL3, SipL1, SipL7, and SipL2, which are involved in the incorporation of the polyketide synthase starting unit.IMPORTANCE Combinatorial biosynthesis has proved its usefulness in generating derivatives of already known compounds with novel or improved pharmacological properties. Sipanmycins are a family of glycosylated macrolactams produced by Streptomyces sp. strain CS149, whose antiproliferative activity is dependent on the sugar moieties attached to the aglycone. In this work, we report the generation of several sipanmycin analogues with different deoxysugars, showing the high degree of flexibility exerted by the glycosyltransferase machinery with respect to the recognition of diverse nucleotide-activated sugars. In addition, modifications in the macrolactam ring were introduced by mutasynthesis approaches, indicating that the enzymes involved in incorporating the starter unit have a moderate ability to introduce different types of ß-amino acids. In conclusion, we have proved the substrate flexibility of key enzymes involved in sipanmycin biosynthesis, especially the glycosyltransferases, which can be exploited in future experiments.


Assuntos
Proteínas de Bactérias/genética , Glicosiltransferases/genética , Lactamas/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Genes Bacterianos , Glicosilação , Glicosiltransferases/metabolismo , Família Multigênica , Mutação , Streptomyces/enzimologia
9.
Microb Cell Fact ; 19(1): 111, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448325

RESUMO

BACKGROUND: Mithramycin is an anti-tumor compound of the aureolic acid family produced by Streptomyces argillaceus. Its biosynthesis gene cluster has been cloned and characterized, and several new analogs with improved pharmacological properties have been generated through combinatorial biosynthesis. To further study these compounds as potential new anticancer drugs requires their production yields to be improved significantly. The biosynthesis of mithramycin proceeds through the formation of the key intermediate 4-demethyl-premithramycinone. Extensive studies have characterized the biosynthesis pathway from this intermediate to mithramycin. However, the biosynthesis pathway for 4-demethyl-premithramycinone remains unclear. RESULTS: Expression of cosmid cosAR7, containing a set of mithramycin biosynthesis genes, in Streptomyces albus resulted in the production of 4-demethyl-premithramycinone, delimiting genes required for its biosynthesis. Inactivation of mtmL, encoding an ATP-dependent acyl-CoA ligase, led to the accumulation of the tricyclic intermediate 2-hydroxy-nogalonic acid, proving its essential role in the formation of the fourth ring of 4-demethyl-premithramycinone. Expression of different sets of mithramycin biosynthesis genes as cassettes in S. albus and analysis of the resulting metabolites, allowed the reconstitution of the biosynthesis pathway for 4-demethyl-premithramycinone, assigning gene functions and establishing the order of biosynthetic steps. CONCLUSIONS: We established the biosynthesis pathway for 4-demethyl-premithramycinone, and identified the minimal set of genes required for its assembly. We propose that the biosynthesis starts with the formation of a linear decaketide by the minimal polyketide synthase MtmPKS. Then, the cyclase/aromatase MtmQ catalyzes the cyclization of the first ring (C7-C12), followed by formation of the second and third rings (C5-C14; C3-C16) catalyzed by the cyclase MtmY. Formation of the fourth ring (C1-C18) requires MtmL and MtmX. Finally, further oxygenation and reduction is catalyzed by MtmOII and MtmTI/MtmTII respectively, to generate the final stable tetracyclic intermediate 4-demethyl-premithramycinone. Understanding the biosynthesis of this compound affords enhanced possibilities to generate new mithramycin analogs and improve their production titers for bioactivity investigation.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Plicamicina/biossíntese , Policetídeos/metabolismo , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
10.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006405

RESUMO

Macrolactams comprise a family of natural compounds with important bioactivities, such as antibiotic, antifungal, and antiproliferative activities. Sipanmycins A and B are two novel members of this family, with two sugar moieties attached to the aglycon. In the related macrolactam vicenistatin, the sugar moiety has been proven to be essential for cytotoxicity. In this work, the gene cluster responsible for the biosynthesis of sipanmycins (sip cluster) in Streptomyces sp. strain CS149 is described and the steps involved in the glycosylation of the final compounds unraveled. Also, the cooperation of two different glycosyltransferases in each glycosylation step is demonstrated. Additionally, the essential role of SipO2 as an auxiliary protein in the incorporation of the second deoxy sugar is addressed. In light of the results obtained by the generation of mutant strains and in silico characterization of the sip cluster, a biosynthetic pathway for sipanmycins and the two deoxy sugars attached is proposed. Finally, the importance of the hydroxyl group at C-10 of the macrolactam ring and the sugar moieties for cytotoxicity and antibiotic activity of sipanmycins is shown.IMPORTANCE The rapid emergence of infectious diseases and multiresistant pathogens has increased the necessity for new bioactive compounds; thus, novel strategies have to be developed to find them. Actinomycetes isolated in symbiosis with insects have attracted attention in recent years as producers of metabolites with important bioactivities. Sipanmycins are glycosylated macrolactams produced by Streptomyces sp. CS149, isolated from leaf-cutting ants, and show potent cytotoxic activity. Here, we characterize the sip cluster and propose a biosynthetic pathway for sipanmycins. As far as we know, it is the first time that the cooperation between two different glycosyltransferases is demonstrated to be strictly necessary for the incorporation of the same sugar. Also, a third protein with homology to P450 monooxygenases, SipO2, is shown to be essential in the second glycosylation step, forming a complex with the glycosyltransferase pair SipS9-SipS14.


Assuntos
Amino Açúcares/metabolismo , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Policetídeos/metabolismo , Streptomyces/enzimologia , Proteínas de Bactérias/genética , Vias Biossintéticas , Clonagem Molecular , Glicosilação , Glicosiltransferases/genética , Família Multigênica , Policetídeos/química , Streptomyces/química , Streptomyces/genética , Streptomyces/metabolismo
11.
Mar Drugs ; 16(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065171

RESUMO

Jomthonic acids (JAs) are a group of natural products (NPs) with adipogenic activity. Structurally, JAs are formed by a modified ß-methylphenylalanine residue, whose biosynthesis involves a methyltransferase that in Streptomyces hygroscopicus has been identified as MppJ. Up to date, three JA members (A⁻C) and a few other natural products containing ß-methylphenylalanine have been discovered from soil-derived microorganisms. Herein, we report the identification of a gene (jomM) coding for a putative methyltransferase highly identical to MppJ in the chromosome of the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. In its 5' region, jomM clusters with two polyketide synthases (PKS) (jomP1, jomP2), a nonribosomal peptide synthetase (NRPS) (jomN) and a thioesterase gene (jomT), possibly conforming a single transcriptional unit. Insertion of a strong constitutive promoter upstream of jomP1 led to the detection of JA A, along with at least two novel JA family members (D and E). Independent inactivation of jomP1, jomN and jomM abolished production of JA A, JA D and JA E, indicating the involvement of these genes in JA biosynthesis. Heterologous expression of the JA biosynthesis cluster in Streptomyces coelicolor M1152 and in Streptomyces albus J1074 led to the production of JA A, B, C and F. We propose a pathway for JAs biosynthesis based on the findings here described.


Assuntos
Aminoácidos/biossíntese , Streptomyces/metabolismo , Aminoácidos/química , Produtos Biológicos , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Estrutura Molecular , Família Multigênica , Fenilalanina/análogos & derivados
12.
Microb Cell Fact ; 16(1): 93, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545544

RESUMO

BACKGROUND: The biosynthesis pathway of benzoxazole compounds caboxamycin and nataxazole have been recently elucidated. Both compounds share one of their precursors, 3-hydroxyanthranilate (two units in the case of nataxazole). In addition, caboxamycin structure includes a salicylate moiety while 6-methylsalycilate is the third scaffold in nataxazole. Pathways cross-talk has been identified in caboxamycin producer Streptomyces sp. NTK937, between caboxamycin and enterobactin pathways, and nataxazole producer Streptomyces sp. Tü6176, between nataxazole and coelibactin pathways. These events represent a natural form of combinatorial biosynthesis. RESULTS: Eleven novel caboxamycin derivatives, and five putative novel derivatives, bearing distinct substitutions in the aryl ring have been generated. These compounds were produced by heterologous expression of several caboxamycin biosynthesis genes in Streptomyces albus J1074 (two compounds), by combinatorial biosynthesis in Streptomyces sp. NTK937 expressing nataxazole iterative polyketide synthase (two compounds) and by mutasynthesis using a nonproducing mutant of Streptomyces sp. NTK937 (12 compounds). Some of the compounds showed improved bioactive properties in comparison with caboxamycin. CONCLUSIONS: In addition to the benzoxazoles naturally biosynthesized by the caboxamycin and nataxazole producers, a greater structural diversity can be generated by mutasynthesis and heterologous expression of benzoxazole biosynthesis genes, not only in the respective producer strains but also in non-benzoxazole producers such as S. albus strains. These results show that the production of a wide variety of benzoxazoles could be potentially achieved by the sole expression of cbxBCDE genes (or orthologs thereof), supplying an external source of salicylate-like compounds, or with the concomitant expression of other genes capable of synthesizing salicylates, such as cbxA or natPK.


Assuntos
Benzoxazóis/metabolismo , Policetídeo Sintases/metabolismo , Streptomyces/metabolismo , Benzoxazóis/química , Vias Biossintéticas , Streptomyces/genética
13.
BMC Physiol ; 17(1): 7, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806941

RESUMO

BACKGROUND: Previous studies show that androgens are involved in hypertrophy and excitability of cardiomyocytes and that their effects are mediated through their receptor. The aim of this study was to evaluate the presence of androgen receptor (AR) in mouse heart during prenatal and early postnatal stages. RESULTS: The expression of AR and related genes, alpha myosin heavy chain -Myh6-, beta myosin heavy chain -Myh7- and atrial natriuretic factor -Nppa- was simultaneously evaluated by semiquantitative RT-PCR. AR was also detected by immunohistochemistry. Androgen receptor mRNA was detected in hearts from 10.5 days post coitum to 16 postnatal days. A higher expression of AR mRNA in atria compared to ventricles was observed in neonatal mouse. A positive correlation between mRNA levels of AR and Nppa was observed in mouse heart at early postnatal development. Androgen receptor expression is similar in males and females during cardiac development. Finally, androgen receptor protein was observed by immunohistochemistry in myocardial cells of atria and ventricles from 12.5 days onwards and restricted after 16.5 days post-coitum to nuclei of cardiomyocytes. CONCLUSION: Present results provide evidence that androgen receptor is expressed from prenatal stages in mouse heart, supporting the proposition that androgens could be involved in mammalian heart development.


Assuntos
Coração/embriologia , Miócitos Cardíacos/metabolismo , Receptores Androgênicos/metabolismo , Animais , Fator Natriurético Atrial , Feminino , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo
14.
Mycopathologia ; 182(7-8): 645-652, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28378240

RESUMO

Testing for Candida albicans germ-tube antibody IFA IgG assay (CAGTA) is used to detect invasive candidiasis infection. However, most suitable assays lack automation and rapid single-sample testing. The CAGTA assay was adapted in an automatic monotest system (invasive candidiasis [CAGTA] VirClia® IgG monotest (VirClia®), a chemiluminescence assay with ready-to-use reagents that provides a rapid objective result. CAGTA assay was compared with the monotest automatic VirClia® assay in order to establish the diagnostic reliability, accuracy, and usefulness of this method. A prospective study with 361 samples from 179 non-neutropenic critically ill adults patients was conducted, including 21 patients with candidemia, 18 with intra-abdominal candidiasis, 84 with Candida spp. colonization, and 56 with culture-negative samples, as well as samples from ten healthy subjects. Overall agreement between the two assays (CAGTA and VirCLIA) was 85.3%. These assays were compared with the gold-standard method to determine the sensitivity, specificity as well as positive and negative predictive values. In patients with candidemia, values for CAGTA and VirCLIA assays were 76.2 versus 85.7%, 80.3 versus 75.8%, 55.2 versus 52.9%, and 91.4 versus 94.3%, respectively. The corresponding values in patients with intra-abdominal candidiasis were 61.1 versus 66.7%, 80.3 versus 75.8%, 45.8 versus 42.9%, and 88.3 versus 89.3%, respectively. No differences were found according to the species of Candida isolated in culture, except for Candida albicans and C. parapsilosis, for which VirClia® was better than CAGTA. According to these results, the automated VirClia® assay was a reliable, rapid, and very easy to perform technique as tool for the diagnosis invasive candidiasis.


Assuntos
Anticorpos Antifúngicos/sangue , Automação Laboratorial/métodos , Candida albicans/imunologia , Candidíase Invasiva/diagnóstico , Imunoensaio/métodos , Testes Sorológicos/métodos , Humanos , Imunoglobulina G/sangue , Unidades de Terapia Intensiva , Medições Luminescentes , Valor Preditivo dos Testes , Estudos Prospectivos , Sensibilidade e Especificidade
15.
Mycopathologia ; 182(5-6): 505-515, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27913978

RESUMO

Diagnosis of invasive pulmonary aspergillosis (IPA) is challenging. The objective of the study was to assess the value of microbiological tests to the diagnosis of IPA in the absence of non-specific radiological data. A retrospective study of 23 patients with suspicion of IPA and positivity of some microbiological diagnostic tests was performed. These tests included conventional microbiological culture, detection of Aspergillus galactomannan (GM) antigen and in some patients (1 â†’ 3)-ß-D-glucan (BDG) and Aspergillus fumigatus DNA using the LightCycler® SeptiFast test. In 10 patients with hematological malignancy, 6 cases were considered 'probable' and 4 'non-classifiable.' In 8 patients with chronic lung disease, 7 cases were classified as 'probable' and 1 as 'proven,' and in 5 patients with prolonged ICU stay (>7 days), there were 2 'proven' cases, 2 'non-classifiable' and 1 putative case. Microbiological culture was positive in 17 cases and 18 Aspergillus spp. were isolated (one mixed culture). A. fumigatus was the most frequent (44.4%) followed by A. tubingensis. The Aspergillus galactomannan (GM) antigen assay was positive in 21 cases (91.3%). The GM antigen and the (1 â†’ 3)-ß-D-glucan (BDG) assays were both performed in 12 cases (52.2%), being positive in 9. The SeptiFast test was performed in 7 patients, being positive in 4. In patients with non-classifiable pulmonary aspergillosis and one or more positive microbiological tests, radiological criteria may not be considered a limiting factor for the diagnosis of IPA.


Assuntos
Aspergillus fumigatus/isolamento & purificação , Testes Diagnósticos de Rotina/métodos , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Aspergilose Pulmonar Invasiva/microbiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
16.
Molecules ; 22(10)2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-29057800

RESUMO

Four novel paulomycin derivatives have been isolated from S. albus J1074 grown in MFE culture medium. These compounds are structural analogs of antibiotics 273a2α and 273a2ß containing a thiazole moiety, probably originated through an intramolecular Michael addition. The novel, thiazole, moiety-containing paulomycins show a lower antibiotic activity than paulomycins A and B against Gram-positive bacteria. However, two of them show an improved activity against Gram-negative bacteria. In addition, the four novel compounds are more stable in culture than paulomycins A and B. Thus, the presence of an N-acetyl-l-cysteine moiety linked to the carbon atom of the paulic acid isothiocyanate moiety, via a thioester bond, and the subsequent intramolecular cyclization of the paulic acid to generate a thiazole heterocycle confer to paulomycins a higher structural stability that otherwise will conduce to paulomycin degradation and into inactive paulomenols.


Assuntos
Antibacterianos/química , Antibacterianos/isolamento & purificação , Streptomyces/química , Tiazóis/química , Antibacterianos/uso terapêutico , Cicloexenos/química , Cicloexenos/farmacologia , Dissacarídeos/química , Dissacarídeos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/patogenicidade , Humanos , Tiazóis/isolamento & purificação , Tiazóis/uso terapêutico
17.
Microb Cell Fact ; 15: 56, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27001601

RESUMO

BACKGROUND: Streptomyces albus J1074 produces glycosylated antibiotics paulomycin A, B and E that derive from chorismate and contain an isothiocyanate residue in form of paulic acid. Paulomycins biosynthesis pathway involves two glycosyltransferases, three acyltransferases, enzymes required for paulic acid biosynthesis (in particular an aminotransferase and a sulfotransferase), and enzymes involved in the biosynthesis of two deoxysugar moieties: D-allose and L-paulomycose. RESULTS: Inactivation of genes encoding enzymes involved in deoxysugar biosynthesis, paulic acid biosynthesis, deoxysugar transfer, and acyl moieties transfer has allowed the identification of several biosynthetic intermediates and shunt products, derived from paulomycin intermediates, and to propose a refined version of the paulomycin biosynthesis pathway. Furthermore, several novel bioactive derivatives of paulomycins carrying modifications in the L-paulomycose moiety have been generated by combinatorial biosynthesis using different plasmids that direct the biosynthesis of alternative deoxyhexoses. CONCLUSIONS: The paulomycins biosynthesis pathway has been defined by inactivation of genes encoding glycosyltransferases, acyltransferases and enzymes involved in paulic acid and L-paulomycose biosynthesis. These experiments have allowed the assignment of each of these genes to specific paulomycin biosynthesis steps based on characterization of products accumulated by the corresponding mutant strains. In addition, novel derivatives of paulomycin A and B containing L-paulomycose modified moieties were generated by combinatorial biosynthesis. The production of such derivatives shows that L-paulomycosyl glycosyltransferase Plm12 possesses a certain degree of flexibility for the transfer of different deoxysugars. In addition, the pyruvate dehydrogenase system form by Plm8 and Plm9 is also flexible to catalyze the attachment of a two-carbon side chain, derived from pyruvate, into both 2,6-dideoxyhexoses and 2,3,6-trideoxyhexoses. The activity of the novel paulomycin derivatives carrying modifications in the L-paulomycose moiety is lower than the original compounds pointing to some interesting structure-activity relationships.


Assuntos
Antibacterianos/biossíntese , Metabolismo dos Carboidratos/genética , Engenharia Metabólica/métodos , Streptomyces/genética , Streptomyces/metabolismo , Vias Biossintéticas/genética , Cicloexenos , Desoxiaçúcares/metabolismo , Dissacarídeos/biossíntese , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Família Multigênica , Organismos Geneticamente Modificados , Streptomyces/enzimologia
18.
Microb Cell Fact ; 15(1): 187, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829451

RESUMO

BACKGROUND: Antitumor compounds PM100117 and PM100118 are glycosylated polyketides derived from the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. The organization and characterization of the PM100117/18 biosynthesis gene cluster has been recently reported. RESULTS: Based on the preceding information and new genetic engineering data, we have outlined the pathway by which PM100117/18 are glycosylated. Furthermore, these genetic engineering experiments have allowed the generation of novel PM100117/18 analogues. Deletion of putative glycosyltranferase genes and additional genes presumably involved in late biosynthesis steps of the three 2,6-dideoxysugars appended to the PM100117/18 polyketide skeleton, resulted in the generation of a series of intermediates and novel derivatives. CONCLUSIONS: Isolation and identification of the novel compounds constitutes an important contribution to our knowledge on PM100117/18 glycosylation, and set the basis for further characterization of specific enzymatic reactions, additional genetic engineering and combinatorial biosynthesis approaches.


Assuntos
Antineoplásicos/metabolismo , Engenharia Genética/métodos , Macrolídeos/metabolismo , Células A549 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Deleção de Genes , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Células HT29 , Humanos , Macrolídeos/farmacologia , Streptomyces/genética , Streptomyces/metabolismo
19.
Microb Cell Fact ; 15: 44, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26905289

RESUMO

BACKGROUND: PM100117 and PM100118 are glycosylated polyketides with remarkable antitumor activity, which derive from the marine symbiotic actinobacteria Streptomyces caniferus GUA-06-05-006A. Structurally, PM100117 and PM100118 are composed of a macrocyclic lactone, three deoxysugar units and a naphthoquinone (NQ) chromophore that shows a clear structural similarity to menaquinone. RESULTS: Whole-genome sequencing of S. caniferus GUA-06-05-006A has enabled the identification of PM100117 and PM100118 biosynthesis gene cluster, which has been characterized on the basis of bioinformatics and genetic engineering data. The product of four genes shows high identity to proteins involved in the biosynthesis of menaquinone via futalosine. Deletion of one of these genes led to a decay in PM100117 and PM100118 production, and to the accumulation of several derivatives lacking NQ. Likewise, five additional genes have been genetically characterized to be involved in the biosynthesis of this moiety. Moreover, the generation of a mutant in a gene coding for a putative cytochrome P450 has led to the production of PM100117 and PM100118 structural analogues showing an enhanced in vitro cytotoxic activity relative to the parental products. CONCLUSIONS: Although a number of compounds structurally related to PM100117 and PM100118 has been discovered, this is, to our knowledge, the first insight reported into their biosynthesis. The structural resemblance of the NQ moiety to menaquinone, and the presence in the cluster of four putative menaquinone biosynthetic genes, suggests a connection between the biosynthesis pathways of both compounds. The availability of the PM100117 and PM100118 biosynthetic gene cluster will surely pave a way to the combinatorial engineering of more derivatives.


Assuntos
Actinobacteria/genética , Antineoplásicos/farmacologia , Vias Biossintéticas/genética , Engenharia Genética/métodos , Macrolídeos/farmacologia , Família Multigênica/genética , Água do Mar/microbiologia , Actinobacteria/efeitos dos fármacos , Antineoplásicos/química , Transporte Biológico/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Carboidratos/biossíntese , Carboidratos/química , Biologia Computacional , Simulação por Computador , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genoma Bacteriano , Macrolídeos/química , Naftoquinonas/química , Naftoquinonas/metabolismo , Análise de Sequência de DNA
20.
Microbiology (Reading) ; 161(Pt 2): 272-284, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416691

RESUMO

The mithramycin biosynthesis gene cluster of Streptomyces argillaceus ATCC 12956 contains 34 ORFs and includes two putative regulatory genes (mtmR and mtrY), which encode proteins of the SARP (Streptomyces antibiotic regulatory protein) and PadR transcriptional regulator families, respectively. MtmR was proposed to behave as a positive regulator of mithramycin biosynthesis. Inactivation and overexpression of mtrY indicated that it is also a positive regulator of mithramycin biosynthesis, being non-essential but required to maintain high levels of mithramycin production in the producer strain. Transcriptional analyses by reverse transcription PCR and quantitative real-time PCR of mithramycin genes, and promoter-probe assays in S. argillaceus polyketide synthase and regulatory mutants and the WT strain, and in the heterologous host Streptomyces albus, were carried out to analyse the role of MtmR and MtrY in the regulation of the mithramycin gene cluster. These experiments revealed that MtmR had a positive role, activating expression of at least six polycistronic units (mtmR-mtmE, mtmQ-mtmTII, mtmX-mtmY, mtmV-mtmTIII, mtmW-mtmMI and mtmGI-mtrB) and one monocistronic unit (mtmGII) in the mithramycin gene cluster. However, MtrY played a dual role in the mithramycin gene cluster: (i) repressing the expression of resistance genes and its coding gene itself by controlling the activity of the mtrYp promoter that directs expression of the regulator mtrY and resistance genes, with this repression being released in the presence of mithramycin; and (ii) enhancing the expression of mithramycin biosynthesis genes when mithramycin is present, by interacting with the mtmRp promoter that controls expression of the mtmR regulator, amongst others.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Plicamicina/biossíntese , Proteínas Repressoras/metabolismo , Streptomyces/genética , Transativadores/metabolismo , Transcrição Gênica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Streptomyces/metabolismo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA