Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(6): 1471-1483, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37768749

RESUMO

The degradation of a mixture of ibuprofen, naproxen, and diclofenac in various effluents by UVC/H2O2 or UVC/S2O82- was studied to assess the impact of the matrix composition and of the oxidant precursor on process efficiency. Experiments were carried out in a 20-L laboratory pilot (a scaled-down version of a full-scale pilot). In effluents collected during dry weather, the rural constructed wetland effluent allowed faster degradation than the urban conventional WWTP effluent, regardless of the nature of the targets or of the oxidant precursor. This was mainly attributed to a three-times higher chemical oxygen demand in the urban effluent, likely to quench the oxidative species. UV fluences to reach 90% degradation of the three compounds were 3,800 and 5,500 mJ cm-2 in the rural effluent, whereas they were 6,600 and 6,100 mJ cm-2 in the urban effluent with H2O2 and S2O82-, respectively. After a rainfall event, the rural effluent composition was not significantly affected compared to that of the urban effluent that underwent the dilution effect. Therefore, the stability of the rural effluent composition allowed comparable degradation efficiency, whereas the dilution effect led to a significant increase in the degradation rate constants in the urban effluent (up to four times higher).


Assuntos
Peróxido de Hidrogênio , Poluentes Químicos da Água , Peróxido de Hidrogênio/química , Águas Residuárias , Poluentes Químicos da Água/química , Raios Ultravioleta , Oxidantes
2.
J Hazard Mater ; 405: 124693, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278728

RESUMO

In the present work, the degradation of three estrogens (17ß-estradiol (E2), estrone (E1) and 17α-ethinylestradiol (EE2)) was investigated under photoactivation of hydrogen peroxide and persulfate. Lab-scale irradiation experiments showed that both UVA and UVB radiations are able to photoactivate the oxidant precursors, although UVB is more efficient to generate radicals and therefore to degrade the targets. The efficiency of both oxidant precursors was investigated showing higher efficiency in the system with persulfate. The pseudo-first order degradation rate constants and the second order rate constants between the hydroxyl or the sulfate radicals and estrogens were measured. In order to evaluate the process efficiency in real treatment conditions, the degradation of the estrogens spiked into sewage treatment plant effluent was studied. Measurements of second order rate constants between the radical and the effluent organic matter by laser flash photolysis allowed to understand the involved quenching mechanisms. A Yeast Estrogen Screen (YES) assay was used to follow the decrease in estrogenic activity during the estrogen degradation. This assay permitted to ensure that the studied processes are not only able to degrade the estrogens but also to remove their estrogenic activity.

3.
Water Res ; 100: 357-366, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27214348

RESUMO

In this study, UV based treatments were implemented at pilot scale to assess their ability to remove hormones from treated wastewater, especially with the view to equip small and medium size Wastewater Treatment Plants (WTPs). To this end, the degradation of a mixture of estrogenic hormones (Estrone (E1), ß-Estradiol (E2), and 17α-Ethinyl Estradiol (EE2)) in waters by UV photolysis and UV/H2O2 process was investigated in real conditions. A particular attention was paid at designing a well validated laboratory scale pilot in order to optimise oxidant concentrations and UV fluence. A Low pressure lamp (254 nm) was used in a flow through commercial reactor. The effects of water matrices (drinking water and treated wastewater) and H2O2 concentrations (10, 40, and 90 mg/L) on the pilot efficiency were first determined. Only E1 could be partially degraded by UV photolysis whereas hormones were all well removed by UV/H2O2 process in both matrices. The second part of the study focused on a chemical and biological assessment of UV photolysis and UV/H2O2 process (30 and 50 mg/L). Degradation rate constants of hormones as well as changes in estrogenic activity (YES bioassay) and toxicity (Vibrio fischeri) were followed at the same time. UV photolysis could not remove neither estrogens nor estrogenic activity at relevant UV fluence in waters. However 80% of initial estrogenic compounds and estrogenic activity could be removed from treated wastewater by combining UV fluence of 423 and 520 mJ/cm(2) with 50 and 30 mg/L of H2O2, respectively. No high estrogenic or toxic by-products were detected by the two bioassays following UV photolysis or UV/H2O2 process. Operating costs were estimated for a full scale pilot. H2O2 was the major cost. By combining the appropriate concentration of H2O2 and UV fluence, it could be possible to design a cost effective treatment for treating estrogens in small and medium size WTPs.


Assuntos
Estrogênios/química , Fotólise , Peróxido de Hidrogênio/química , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA