Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Ecol ; 39(3): 398-412, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23475221

RESUMO

Prescribed burning (PB) is gaining popularity as a low-cost forest protection measure that efficiently reduces fuel build-up, but its effects on tree health and growth are poorly understood. Here, we evaluated the impact of PB on plant defenses in Mediterranean pine forests (Pinus halepensis and P. nigra ssp. laricio). These chemical defenses were estimated based on needle secondary metabolites (terpenes and phenolics including flavonoids) and discussed in terms of chlorophyll fluorescence and soil nutrients. Three treatments were applied: absence of burning (control plots); single burns (plots burned once); and repeated burns (plots burned twice). For single burns, we also explored changes over time. In P. laricio, PB tended to trigger only minor modifications consisting exclusively of short-lived increases (observed within 3 months after PB) in flavonoid index, possibly due to the leaf temperature increase during PB. In P. halepensis, PB had detrimental effects on physiological performance, consisting of (i) significant decreases in actual PSII efficiency (ΦPSII) in light-adapted conditions after repeated PB, and (ii) short-lived decreases in variable-to-maximum fluorescence ratio (Fv/Fm) after single PB, indicating that PB actually stressed P. halepensis trees. Repeated PB also promoted terpene-like metabolite production, which increased 2 to 3-fold compared to control trees. Correlations between terpene metabolites and soil chemistry were found. These results suggest that PB impacts needle secondary metabolism both directly (via a temperature impact) and indirectly (via soil nutrients), and that these impacts vary according to species/site location, frequency and time elapsed since last fire. Our findings are discussed with regard to the use of PB as a forest management technique and its consequences on plant investment in chemical defenses.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios , Pinus/metabolismo , Folhas de Planta/metabolismo , Metabolismo Secundário , Pinus/crescimento & desenvolvimento , Solo/química , Terpenos/metabolismo , Árvores/crescimento & desenvolvimento
2.
Chemosphere ; 67(2): 276-84, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17156816

RESUMO

The effects of water deficit stress and plant water potential (psi) on monoterpene and sesquiterpene leaf emissions from Rosmarinus officinalis, Pinus halepensis, Cistus albidus and Quercus coccifera were studied over 11 days of water withholding (from t(1) to t(11)), after substrates had achieved their field capacity (control pots: t(0)). Volatile compounds were sampled from the same twig per plant all throughout the study, using a dynamic bag enclosure system. Volatiles, collected in Tenax TA, were studied by means of GC-FID and GC-MS. Monoterpene emissions of water stressed plants (t(1)-t(11)) were either similar to those of control seedlings (R. officinalis and Q. coccifera) or higher (P. halepensis and C. albidus). By contrast, sesquiterpene emissions were strongly reduced or inhibited after four days of water withholding, particularly for R. officinalis, thus altering terpene emission composition. Despite the positive effect of water stress on leaf monoterpene emissions of P. halepensis and C. albidus, the significant correlation between these emissions and psi showed a slow decrease of these emissions over long term water deficit periods. This contrasted with the rapid decline of sesquiterpene emissions of R. officinalis according to lower values of psi. These results provide an overall picture of the different responses of monoterpene and sesquiterpene emissions to progressive water loss. They also reveal the utility of using psi for estimating some emission rates of some species according to drought conditions.


Assuntos
Cistus/fisiologia , Pinus/fisiologia , Quercus/fisiologia , Rosmarinus/fisiologia , Sesquiterpenos/metabolismo , Terpenos/metabolismo , Árvores/fisiologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA