Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mol Cell ; 83(19): 3546-3557.e8, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802027

RESUMO

Nonstructural protein 1 (Nsp1) produced by coronaviruses inhibits host protein synthesis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp1 C-terminal domain was shown to bind the ribosomal mRNA channel to inhibit translation, but it is unclear whether this mechanism is broadly used by coronaviruses, whether the Nsp1 N-terminal domain binds the ribosome, or how Nsp1 allows viral RNAs to be translated. Here, we investigated Nsp1 from SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), and Bat-Hp-CoV coronaviruses using structural, biophysical, and biochemical experiments, revealing a conserved role for the C-terminal domain. Additionally, the N-terminal domain of Bat-Hp-CoV Nsp1 binds to the decoding center of the 40S subunit, where it would prevent mRNA and eIF1A accommodation. Structure-based experiments demonstrated the importance of decoding center interactions in all three coronaviruses and showed that the same regions of Nsp1 are necessary for the selective translation of viral RNAs. Our results provide a mechanistic framework to understand how Nsp1 controls preferential translation of viral RNAs.


Assuntos
COVID-19 , Quirópteros , Animais , Quirópteros/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Domínios Proteicos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
2.
Mol Cell ; 73(3): 490-504.e6, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30581145

RESUMO

Fused in sarcoma (FUS) is an RNA binding protein involved in regulating many aspects of RNA processing and linked to several neurodegenerative diseases. Transcriptomics studies indicate that FUS binds a large variety of RNA motifs, suggesting that FUS RNA binding might be quite complex. Here, we present solution structures of FUS zinc finger (ZnF) and RNA recognition motif (RRM) domains bound to RNA. These structures show a bipartite binding mode of FUS comprising of sequence-specific recognition of a NGGU motif via the ZnF and an unusual shape recognition of a stem-loop RNA via the RRM. In addition, sequence-independent interactions via the RGG repeats significantly increase binding affinity and promote destabilization of structured RNA conformation, enabling additional binding. We further show that disruption of the RRM and ZnF domains abolishes FUS function in splicing. Altogether, our results rationalize why deciphering the RNA binding mode of FUS has been so challenging.


Assuntos
Proteína FUS de Ligação a RNA/química , RNA/química , Sítios de Ligação , Células HeLa , Humanos , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Motivo de Reconhecimento de RNA , Splicing de RNA , Estabilidade de RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Dedos de Zinco
3.
Trends Biochem Sci ; 47(11): 921-935, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35780009

RESUMO

The term 'nonsense-mediated mRNA decay' (NMD) was initially coined to describe the translation-dependent degradation of mRNAs harboring premature termination codons (PTCs), but it is meanwhile known that NMD also targets many canonical mRNAs with numerous biological implications. The molecular mechanisms determining on which RNAs NMD ensues are only partially understood. Considering the broad range of NMD-sensitive RNAs and the variable degrees of their degradation, we highlight here the hallmarks of mammalian NMD and point out open questions. We review the links between NMD and disease by summarizing the role of NMD in cancer, neurodegeneration, and viral infections. Finally, we describe strategies to modulate NMD activity and specificity as potential therapeutic approaches for various diseases.


Assuntos
Códon sem Sentido , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Mamíferos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Nucleic Acids Res ; 50(11): 6300-6312, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687109

RESUMO

Heterogenous nuclear ribonucleoproteins (hnRNPs) are abundant proteins implicated in various steps of RNA processing that assemble on nuclear RNA into larger complexes termed 40S hnRNP particles. Despite their initial discovery 55 years ago, our understanding of these intriguing macromolecular assemblies remains limited. Here, we report the biochemical purification of native 40S hnRNP particles and the determination of their complete protein composition by label-free quantitative mass spectrometry, identifying A-group and C-group hnRNPs as the major protein constituents. Isolated 40S hnRNP particles dissociate upon RNA digestion and can be reconstituted in vitro on defined RNAs in the presence of the individual protein components, demonstrating a scaffolding role for RNA in nucleating particle formation. Finally, we revealed their nanometer scale, condensate-like nature, promoted by intrinsically disordered regions of A-group hnRNPs. Collectively, we identify nuclear 40S hnRNP particles as novel dynamic biomolecular condensates.


Assuntos
Condensados Biomoleculares , Ribonucleoproteínas Nucleares Heterogêneas , Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , RNA/metabolismo
5.
PLoS Pathog ; 17(5): e1009603, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34019569

RESUMO

The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus' hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.


Assuntos
Infecções por Alphavirus/virologia , Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Degradação do RNAm Mediada por Códon sem Sentido/genética , Vírus da Floresta de Semliki/fisiologia , Proteínas do Capsídeo/genética , Células HeLa , Humanos , Vírus da Floresta de Semliki/genética , Replicação Viral
6.
Nucleic Acids Res ; 49(14): 8261-8276, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34232997

RESUMO

Newly synthesized mRNA is translated during its export through the nuclear pore complex, when its 5'-cap structure is still bound by the nuclear cap-binding complex (CBC), a heterodimer of cap-binding protein (CBP) 80 and CBP20. Despite its critical role in mRNA surveillance, the mechanism by which CBC-dependent translation (CT) is regulated remains unknown. Here, we demonstrate that the CT initiation factor (CTIF) is tethered in a translationally incompetent manner to the perinuclear region by the DEAD-box helicase 19B (DDX19B). DDX19B hands over CTIF to CBP80, which is associated with the 5'-cap of a newly exported mRNA. The resulting CBP80-CTIF complex then initiates CT in the perinuclear region. We also show that impeding the interaction between CTIF and DDX19B leads to uncontrolled CT throughout the cytosol, consequently dysregulating nonsense-mediated mRNA decay. Altogether, our data provide molecular evidence supporting the importance of tight control of local translation in the perinuclear region.


Assuntos
RNA Helicases DEAD-box/genética , Fatores de Iniciação em Eucariotos/genética , Complexo Proteico Nuclear de Ligação ao Cap/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Biossíntese de Proteínas , Citoplasma/genética , Células HeLa , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/genética , Mapas de Interação de Proteínas/genética , Proteínas de Ligação ao Cap de RNA/genética , RNA Mensageiro/genética
7.
Nucleic Acids Res ; 49(13): 7713-7731, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34233002

RESUMO

Liquid-liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein Fused in Sarcoma (FUS) undergoes LLPS and mutations in FUS have been causally linked to the motor neuron disease Amyotrophic Lateral Sclerosis (ALS-FUS). LLPS followed by aggregation of cytoplasmic FUS has been proposed to be a crucial disease mechanism. However, it is currently unclear how LLPS impacts the behaviour of FUS in cells, e.g. its interactome. Hence, we developed a method allowing for the purification of LLPS FUS-containing droplets from cell lysates. We observe substantial alterations in the interactome, depending on its biophysical state. While non-LLPS FUS interacts mainly with factors involved in pre-mRNA processing, LLPS FUS predominantly binds to proteins involved in chromatin remodelling and DNA damage repair. Interestingly, also mitochondrial factors are strongly enriched with LLPS FUS, providing a potential explanation for the observed changes in mitochondrial gene expression in mouse models of ALS-FUS. In summary, we present a methodology to investigate the interactomes of phase separating proteins and provide evidence that LLPS shapes the FUS interactome with implications for function and disease.


Assuntos
Proteína FUS de Ligação a RNA/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Células HEK293 , Células HeLa , Humanos , Mapeamento de Interação de Proteínas , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/isolamento & purificação
8.
RNA Biol ; 19(1): 609-621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491909

RESUMO

Cells of metazoans respond to internal and external stressors by activating stress response pathways that aim for re-establishing cellular homoeostasis or, if this cannot be achieved, triggering programmed cell death. Problems during translation, arising from defective mRNAs, tRNAs, ribosomes or protein misfolding, can activate stress response pathways as well as mRNA surveillance and ribosome quality control programs. Recently, ribosome collisions have emerged as a central signal for translational stress and shown to elicit different stress responses. Here, we review our current knowledge about the intricate mutual connections between ribosome collisions, stress response pathways and mRNA surveillance. A central factor connecting the sensing of collided ribosomes with degradation of the nascent polypeptides, dissociation of the stalled ribosomes and degradation of the mRNA by no-go or non-stop decay is the E3-ligase ZNF598. We tested whether ZNF598 also plays a role in nonsense-mediated mRNA decay (NMD) but found that it is dispensable for this translation termination-associated mRNA surveillance pathway, which in combination with other recent data argues against stable ribosome stalling at termination codons being the NMD-triggering signal.


Assuntos
Seguro , Ribossomos , Degradação do RNAm Mediada por Códon sem Sentido , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
9.
RNA Biol ; 19(1): 78-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965175

RESUMO

Protein synthesis is a central process in gene expression and the development of efficient in vitro translation systems has been the focus of scientific efforts for decades. The production of translation-competent lysates originating from human cells or tissues remains challenging, mainly due to the variability of cell lysis conditions. Here we present a robust and fast method based on dual centrifugation that allows for detergent-free cell lysis under controlled mechanical forces. We optimized the lysate preparation to yield cytoplasm-enriched extracts from human cells that efficiently translate mRNAs in a cap-dependent as well as in an IRES-mediated way. Reduction of the phosphorylation state of eIF2α using recombinant GADD34 and 2-aminopurine considerably boosts the protein output, reinforcing the potential of this method to produce recombinant proteins from human lysates.


Assuntos
Fracionamento Celular , Sistema Livre de Células , Centrifugação , Técnicas In Vitro , Biossíntese de Proteínas , Fracionamento Celular/métodos , Centrifugação/métodos , Genes Reporter , Células HeLa , Humanos , RNA Mensageiro/genética , Frações Subcelulares
10.
Nucleic Acids Res ; 48(18): 10259-10279, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941650

RESUMO

To gain insight into the mechanistic link between translation termination and nonsense-mediated mRNA decay (NMD), we depleted the ribosome recycling factor ABCE1 in human cells, resulting in an upregulation of NMD-sensitive mRNAs. Suppression of NMD on these mRNAs occurs prior to their SMG6-mediated endonucleolytic cleavage. ABCE1 depletion caused ribosome stalling at termination codons (TCs) and increased ribosome occupancy in 3' UTRs, implying enhanced TC readthrough. ABCE1 knockdown indeed increased the rate of readthrough and continuation of translation in different reading frames, providing a possible explanation for the observed NMD inhibition, since enhanced readthrough displaces NMD activating proteins from the 3' UTR. Our results indicate that stalling at TCs triggers ribosome collisions and activates ribosome quality control. Collectively, we show that improper translation termination can lead to readthrough of the TC, presumably due to ribosome collisions pushing the stalled ribosomes into the 3' UTR, where it can resume translation in-frame as well as out-of-frame.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Códon de Terminação/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Telomerase/genética , Regiões 3' não Traduzidas/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Humanos , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , Ribossomos/genética
11.
Nucleic Acids Res ; 48(12): 6889-6905, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479602

RESUMO

Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


Assuntos
Esclerose Lateral Amiotrófica/genética , Homeostase/genética , Proteína FUS de Ligação a RNA/genética , Animais , Citoplasma/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Íntrons/genética , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Mutação/genética , Splicing de RNA/genética , Superóxido Dismutase-1/genética , Proteína com Valosina/genética
12.
Semin Cell Dev Biol ; 75: 78-87, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28866327

RESUMO

Nonsense-mediated mRNA decay (NMD) has traditionally been described as a quality control system that rids cells of aberrant mRNAs with crippled protein coding potential. However, transcriptome-wide profiling of NMD deficient cells identified a plethora of seemingly intact mRNAs coding for functional proteins as NMD targets. This led to the view that NMD constitutes an additional post-transcriptional layer of gene expression control involved in the regulation of many different biological pathways. Here, we review our current knowledge about the role of NMD in embryonic development and tissue-specific cell differentiation. We further summarize how NMD contributes to balancing of the integrated stress response and to cellular homeostasis of splicing regulators and NMD factors through auto-regulatory feedback loops. In addition, we discuss recent evidence that suggests a role for NMD as an innate immune response against several viruses. Altogether, NMD appears to play an important role in a broad spectrum of biological pathways, many of which still remain to be discovered.


Assuntos
Regulação da Expressão Gênica , Homeostase/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/genética , Animais , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Humanos , Imunidade Inata/genética , Controle de Qualidade , RNA Mensageiro/metabolismo
13.
EMBO J ; 35(14): 1504-21, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252488

RESUMO

Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Íntrons , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Splicing de RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Linhagem Celular , Humanos
14.
RNA ; 24(4): 557-573, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29348139

RESUMO

The term "nonsense-mediated mRNA decay" (NMD) originally described the degradation of mRNAs with premature translation-termination codons (PTCs), but its meaning has recently been extended to be a translation-dependent post-transcriptional regulator of gene expression affecting 3%-10% of all mRNAs. The degradation of NMD target mRNAs involves both exonucleolytic and endonucleolytic pathways in mammalian cells. While the latter is mediated by the endonuclease SMG6, the former pathway has been reported to require a complex of SMG5-SMG7 or SMG5-PNRC2 binding to UPF1. However, the existence, dominance, and mechanistic details of these exonucleolytic pathways are divisive. Therefore, we have investigated the possible exonucleolytic modes of mRNA decay in NMD by examining the roles of UPF1, SMG5, SMG7, and PNRC2 using a combination of functional assays and interaction mapping. Confirming previous work, we detected an interaction between SMG5 and SMG7 and also a functional need for this complex in NMD. In contrast, we found no evidence for the existence of a physical or functional interaction between SMG5 and PNRC2. Instead, we show that UPF1 interacts with PNRC2 and that it triggers 5'-3' exonucleolytic decay of reporter transcripts in tethering assays. PNRC2 interacts mainly with decapping factors and its knockdown does not affect the RNA levels of NMD reporters. We conclude that PNRC2 is probably an important mRNA decapping factor but that it does not appear to be required for NMD.


Assuntos
Proteínas de Transporte/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , RNA Helicases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Códon sem Sentido/genética , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Ligação Proteica/genética , RNA Helicases/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Transativadores/genética , Técnicas do Sistema de Duplo-Híbrido
15.
RNA ; 23(2): 189-201, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27864472

RESUMO

Besides degrading aberrant mRNAs that harbor a premature translation termination codon (PTC), nonsense-mediated mRNA decay (NMD) also targets many seemingly "normal" mRNAs that encode for full-length proteins. To identify a bona fide set of such endogenous NMD targets in human cells, we applied a meta-analysis approach in which we combined transcriptome profiling of knockdowns and rescues of the three NMD factors UPF1, SMG6, and SMG7. We provide evidence that this combinatorial approach identifies NMD-targeted transcripts more reliably than previous attempts that focused on inactivation of single NMD factors. Our data revealed that SMG6 and SMG7 act on essentially the same transcripts, indicating extensive redundancy between the endo- and exonucleolytic decay routes. Besides mRNAs, we also identified as NMD targets many long noncoding RNAs as well as miRNA and snoRNA host genes. The NMD target feature with the most predictive value is an intron in the 3' UTR, followed by the presence of upstream open reading frames (uORFs) and long 3' UTRs. Furthermore, the 3' UTRs of NMD-targeted transcripts tend to have an increased GC content and to be phylogenetically less conserved when compared to 3' UTRs of NMD insensitive transcripts.


Assuntos
Proteínas de Transporte/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro/metabolismo , Telomerase/metabolismo , Transativadores/metabolismo , Transcriptoma , Composição de Bases , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Códon sem Sentido , Expressão Gênica , Células HeLa , Humanos , Íntrons , MicroRNAs/química , MicroRNAs/metabolismo , Ligação Proteica , RNA Helicases , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , RNA Mensageiro/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/genética , Transativadores/antagonistas & inibidores , Transativadores/genética
16.
Chimia (Aarau) ; 73(6): 374-379, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31118119

RESUMO

Eukaryotic cells have evolved a number of survival tactics and quality control pathways that are able to counter intrinsic error-prone mechanisms and allow for maintenance of cellular homeostasis in the face of external stresses. This review will discuss the role of two cellular eukaryotic processes that are vital for maintenance of cellular homeostasis - 1) the nonsense-mediated mRNA decay (NMD) pathway and 2) the transient formation of stress granules (SG) - and explore the current literature on their roles in antiviral defence. Within the NCCR RNA & Disease, the laboratories of Proffs. O. Mühlemann and Volker Thiel teamed up to unravel the roles of NMD and SGs, and their interconnections in defending cells from alphavirus and coronavirus infections.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Antivirais , RNA
18.
Nucleic Acids Res ; 42(14): 9217-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053839

RESUMO

Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD substrates can be degraded by different routes that all require phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of the three known NMD factors thought to be recruited to nonsense mRNAs via an interaction with P-UPF1, leading to eventual mRNA degradation. By artificial tethering of SMG6 and mutants thereof to a reporter mRNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 to reduce reporter mRNA levels. Using in vivo and in vitro approaches, we further document that SMG6 and the unique stalk region of the UPF1 helicase domain, along with a contribution from the SQ domain, form a novel interaction and we also show that this region of the UPF1 helicase domain is critical for SMG6 function and NMD. Our results show that this interaction is required for NMD and for the capability of tethered SMG6 to degrade its bound RNA, suggesting that it contributes to the intricate regulation of UPF1 and SMG6 enzymatic activities.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Telomerase/metabolismo , Transativadores/metabolismo , Sítios de Ligação , Células HeLa , Humanos , Mutação , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , RNA Helicases , Telomerase/química , Transativadores/química , Transativadores/genética
19.
Trends Genet ; 28(2): 70-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22154474

RESUMO

The accuracy of eukaryotic gene expression relies on efficient quality control (QC). Most steps in the gene expression pathway en route from transcription to translation are error-prone and QC systems have evolved to utilise many of these biochemical processes as checkpoints to monitor the production or function of mRNA-protein particles (mRNPs). Mechanistically, such evaluation of mRNP fitness is based on competition between the opposing activities of mRNP biogenesis and/or function and mRNP turnover. In fact, quite subtle alteration of any parameter can tip the balance between mRNP persistence and degradation and, therefore, QC checkpoints also comprise perfect opportunities for controlling cellular levels of individual or even entire families of transcripts. From this perspective, QC and gene regulation represent two outcomes of the same molecular process.


Assuntos
Regulação da Expressão Gênica , Ribonucleoproteínas/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Biossíntese de Proteínas , Estabilidade de RNA
20.
RNA ; 19(10): 1432-48, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23962664

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological mRNAs. An exon-junction complex (EJC) located downstream from a TC acts as an NMD-enhancing signal, but is not generally required for NMD. Here, we compared these "EJC-enhanced" and "EJC-independent" modes of NMD with regard to their requirement for seven known NMD factors in human cells using two well-characterized NMD reporter genes (immunoglobulin µ and ß-Globin) with or without an intron downstream from the PTC. We show that both NMD modes depend on UPF1 and SMG1, but detected transcript-specific differences with respect to the requirement for UPF2 and UPF3b, consistent with previously reported UPF2- and UPF3-independent branches of NMD. In addition and contrary to expectation, a higher sensitivity of EJC-independent NMD to reduced UPF2 and UPF3b concentrations was observed. Our data further revealed a redundancy of the endo- and exonucleolytic mRNA degradation pathways in both modes of NMD. Moreover, the relative contributions of both decay pathways differed between the reporters, with PTC-containing immunoglobulin µ transcripts being preferentially subjected to SMG6-mediated endonucleolytic cleavage, whereas ß-Globin transcripts were predominantly degraded by the SMG5/SMG7-dependent pathway. Overall, the surprising heterogeneity observed with only two NMD reporter pairs suggests the existence of several mechanistically distinct branches of NMD in human cells.


Assuntos
Códon sem Sentido/genética , Éxons/genética , Regulação da Expressão Gênica , Degradação do RNAm Mediada por Códon sem Sentido/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Western Blotting , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases , RNA Helicases , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA