Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phycol ; 50(1): 149-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26988016

RESUMO

The phylogeny of ligulate and sulfuric-acid containing species of Desmarestia, occurring worldwide from polar to temperate regions, was revised using a multigenic and polyphasic approach. Sequence data, gametophyte characteristics, and sporophyte morphology support reducing a total of 16 taxa to four different species. (1) D. herbacea, containing broad-bladed and highly branched forms, has dioecious gametophytes. The three other species have monoecious gametophytes: (2) D. ligulata which is profusely branched and, except for one subspecies, narrow-bladed, (3) Japanese ligulate Desmarestia, here described as D. japonica sp. nov., which is morphologically similar to D. ligulata but genetically distant from all other ligulate taxa. This species may have conserved the morphology of original ligulate Desmarestia. (4) D. dudresnayi, including unbranched or little branched broad-bladed taxa. A figure of the holotype of D. dudresnayi, which was lost for decades, was relocated. The taxonomy is complemented by a comparison of internal transcribed spacer and cytochrome c oxidase subunit I (cox1) as potential barcode loci, with cox1 offering good resolution, reflecting species delimitations within the genus Desmarestia.

2.
J Mol Evol ; 57(6): 613-22, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14745530

RESUMO

The evolution of viral genomes has recently attracted considerable attention. We compare the sequences of two large viral genomes, EsV-1 and FirrV-1, belonging to the family of phaeoviruses which infect different species of marine brown algae. Although their genomes differ substantially in size, these viruses share similar morphologies and similar latent infection cycles. In fact, sequence comparisons show that the viruses have more than 60% of their genes in common. However, the order of genes is completely different in the two genomes, suggesting that extensive recombinational events in addition to several large deletions had occurred during the separate evolutionary routes from a common ancestor. We investigated genes encoding components of signal transduction pathways and genes encoding replicative functions in more detail. We found that the two genomes possess different, although overlapping, sets of genes in both classes, suggesting that different genes from each class were lost, perhaps randomly, after the separate evolution from an ancestral genome. Random loss would also account for the fact that more than one-third of the genes in one viral genome has no counterparts in the other genome. We speculate that the ancestral genome belonged to a cellular organism that had once invaded a primordial brown algal host.


Assuntos
Evolução Molecular , Genoma Viral , Phycodnaviridae/genética , Sequência de Aminoácidos , Replicação do DNA/genética , DNA Viral/química , DNA Viral/genética , Genes Virais/genética , Dados de Sequência Molecular , Phaeophyceae/virologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA