RESUMO
The formation of a stable triacylgermenolate 2 as a decisive intermediate was achieved by using three pathways. The first two methods involve the reaction of KOtBu or alternatively potassium with tetraacylgermane 1 yielding 2 via one electron transfer. The mechanism involves the formation of radical anions (shown by EPR). This reaction is highly efficient and selective. The third method is a classical salt metathesis reaction toward 2 in nearly quantitative yield. The formation of 2 was confirmed by NMR spectroscopy, UV-vis measurements, and X-ray crystallography. Germenolate 2 serves as a starting point for a wide variety of organo-germanium compounds. We demonstrate the potential of this intermediate by introducing new types of Ge-based photoinitiators 4b-4f. The UV-vis absorption spectra of 4b-4f show considerably increased band intensities due to the presence of eight or more chromophores. Moreover, compounds 4d-4f show absorption tailing up to 525 nm. The performance of these photoinitiators is demonstrated by spectroscopy (time-resolved EPR, laser flash photolysis (LFP), photobleaching (UV-vis)) and photopolymerization experiments (photo-DSC measurements).
RESUMO
Photochemical additive manufacturing technologies can produce complex geometries in short production times and thus have considerable potential as a tool to fabricate medical devices such as individualized patient-specific implants, prosthetics and tissue engineering scaffolds. However, most photopolymer resins degrade only slowly under the mild conditions required for many biomedical applications. Herein we report a novel platform consisting of amino acid-based polyphosphorodiamidate (APdA) monomers with hydrolytically cleavable bonds. The substituent on the α-amino acid can be used as a handle for facile control of hydrolysis rates of the monomers into their endogenous components, namely phosphate and the corresponding amino acid. Furthermore, monomer hydrolysis is considerably accelerated at lower pH values. The monomers underwent thiol-yne photopolymerization and could be 3D structured via multiphoton lithography. Copolymerization with commonly used hydrophobic thiols demonstrates not only their ability to regulate the ambient degradation rate of thiol-yne polyester photopolymer resins, but also desirable surface erosion behavior. Such degradation profiles, in the appropriate time frames, in suitably mild conditions, combined with their low cytotoxicity and 3D printability, render these novel photomonomers of significant interest for a wide range of biomaterial applications.
Assuntos
Aminoácidos , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Materiais Biocompatíveis , Engenharia Tecidual , Poliésteres , Materiais Dentários , Compostos de Sulfidrila/químicaRESUMO
Correction for 'Synthesis and characterization of diacylgermanes: persistent derivatives with superior photoreactivity' by Sabrina D. Püschmann et al., Dalton Trans., 2021, 50, 11965-11974, DOI: 10.1039/D1DT02091A.
RESUMO
Bighorn sheep (Ovis canadensis) are predicted to have a degree of susceptibility to the transmissible spongiform encephalopathies (TSE) chronic wasting disease and scrapie. We opportunistically screened 127 captive bighorn sheep and 152 free-ranging bighorn sheep in Colorado, US for the presence of TSE over a period of 35 yr. None of the animals demonstrated clinical signs, gross pathology, histopathology, or immunohistochemical staining patterns suggestive of TSE.
Assuntos
Doenças Priônicas/veterinária , Carneiro da Montanha , Animais , Colorado/epidemiologia , Feminino , Masculino , Vigilância da População , Doenças Priônicas/epidemiologiaRESUMO
Acylgermanes are known as highly efficient photoinitiators. In this contribution, we present the synthesis of new diacylgermanes 4a-evia a multiple silyl abstraction methodology. The method outperforms the state-of-the-art approach (Corey-Seebach reaction) towards diacylgermanes in terms of group tolerance and toxicity of reagents. Moreover, these compounds are decorated with bulky mesityl groups in order to improve their storage stability. The isolated diacylgermanes were characterized by multinuclear NMR-, UV-Vis spectroscopy and X-ray crystallography, as well as photolysis experiments (photobleaching) and photo-DSC measurements (photopolymerization behavior). Upon irradiation with an LED emitting at 385 nm, all compounds except for 4a and 4c bleach efficiently with quantum yields above 0.6. Due to their broad absorption bands, the compounds can be also bleached with blue light (470 nm), where especially 4e bleaches more efficiently than Ivocerin®.