Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317258

RESUMO

Streptococcus suis (S. suis) is an important porcine pathogen causing meningitis, arthritis, and septicemia. Serotypes 2 and 14 are the most common zoonotic ones worldwide, whereas serotypes 2, 9, and 7 are very important in pigs in Europe. To cause invasive infections S. suis needs to enter the bloodstream. Consequently, the immune response in blood represents an important line of defense and bacteremia plays a key role in the pathogenesis of invasive S. suis infections. We investigated the working hypothesis that S. suis strains of the same serotype but different clonal complex (CC) might exhibit substantial differences in the interaction with components of the immune system in porcine blood. The experimental design of this study includes comparative analysis of 8 virulent strains belonging to 4 serotypes with strains of the same serotype being genetically not closely related. Significant differences between two strains of the same serotype but different clonal complex were recorded in the flow cytometric analysis of association with different leukocytes for serotype 9 and 14. Our results demonstrate that the serotype 9 strain of CC94 shows significantly increased association with monocytes and survival in porcine blood of conventional piglets as well as a tendency towards decreased composition of C3 in plasma of these piglets in comparison to the serotype 9 strain of CC16. Correlation analysis of C3 deposition on the bacterial surface and survival in respective blood samples of 8-week-old piglets demonstrated a negative correlation indicating that C3 deposition is a crucial step to limit bacterial survival and proliferation of different S. suis pathotypes in the blood of these piglets. In summary, our results indicate that the capsule composition of a S. suis strain is not alone sufficient to determine association with leukocytes, activation of complement, induction of proinflammatory cytokines, oxidative burst, and bacterial survival in porcine blood. In this study, substantial differences in these host-pathogen interactions were observed between strains of the same serotype. Therefore, a more comprehensive characterization of the field isolates, including at least MLST analysis to determine the sequence type/clonal complex, is recommended.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Suínos , Animais , Streptococcus suis/genética , Monócitos , Tipagem de Sequências Multilocus/veterinária , Sorogrupo , Granulócitos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Doenças dos Suínos/microbiologia
3.
Front Microbiol ; 14: 1328890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260890

RESUMO

Background: Cryptococcosis and cryptococcal meningitis, caused by Cryptococcus neoformans infections, lead to approximately 180,000 deaths per year, primarily in developing countries. Individuals with compromised immune systems, e.g., due to HIV infection (AIDS) or chemotherapy, are particularly vulnerable. Conventional treatment options are often limited and can cause severe side effects. Therefore, this study aimed to investigate the antifungal effect of insect-derived proline-rich antimicrobial peptides (PrAMPs) against C. neoformans. These peptides are known for their low toxicity and their high efficacy in murine infection models, making them a promising alternative for treatment. Results: A preliminary screening of the minimal inhibitory concentrations (MICs) of 20 AMPs, including the well-known PrAMPs Onc112, Api137, and Chex1Arg20 as well as the cathelicidin CRAMP against the C. neoformans strains 1841, H99, and KN99α revealed promising results, with MICs as low as 1.6 µmol/L. Subsequent investigations of selected peptides, determining their influence on fungal colony-forming units, confirmed their strong activity. The antifungal activity was affected by factors such as peptide net charge and sequence, with stronger effects at higher net charges probably due to better intracellular uptake confirmed by confocal laser scanning microscopy. Inactive scrambled peptides suggest a specific intracellular target, although scanning electron microscopy showed that PrAMPs also damaged the cell exterior for a low proportion of the cells. Possible pore formation could facilitate entry into the cytosol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA