Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
New Phytol ; 242(5): 2059-2076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650352

RESUMO

Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE ß1 (PI-4Kß1), and OBF-BINDING PROTEIN 1 (OBP1).


Assuntos
Estudo de Associação Genômica Ampla , Reguladores de Crescimento de Plantas , Populus , Populus/genética , Reguladores de Crescimento de Plantas/metabolismo , Redes Reguladoras de Genes , Epistasia Genética , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Fenótipo , Transdução de Sinais/genética
2.
Plant Cell ; 31(10): 2386-2410, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416823

RESUMO

Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.


Assuntos
Canais de Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Laccaria/metabolismo , Lipopolissacarídeos/metabolismo , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/química , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Transdução de Sinais
3.
Plant Biotechnol J ; 19(9): 1743-1755, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33774917

RESUMO

Eucalyptus is among the most widely planted taxa of forest trees worldwide. However, its spread as an exotic or genetically engineered form can create ecological and social problems. To mitigate gene flow via pollen and seeds, we mutated the Eucalyptus orthologue of LEAFY (LFY) by transforming a Eucalyptus grandis × urophylla wild-type hybrid and two Flowering Locus T (FT) overexpressing (and flowering) lines with CRISPR Cas9 targeting its LFY orthologue, ELFY. We achieved high rates of elfy biallelic knockouts, often approaching 100% of transgene insertion events. Frameshift mutations and deletions removing conserved amino acids caused strong floral alterations, including indeterminacy in floral development and an absence of male and female gametes. These mutants were otherwise visibly normal and did not differ statistically from transgenic controls in juvenile vegetative growth rate or leaf morphology in greenhouse trials. Genes upstream or near to ELFY in the floral development pathway were overexpressed, whereas floral organ identity genes downstream of ELFY were severely depressed. We conclude that disruption of ELFY function appears to be a useful tool for sexual containment, without causing statistically significant or large adverse effects on juvenile vegetative growth or leaf morphology.


Assuntos
Eucalyptus , Eucalyptus/genética , Florestas , Regulação da Expressão Gênica de Plantas , Inflorescência , Folhas de Planta , Plantas Geneticamente Modificadas/genética , Árvores/genética
4.
New Phytol ; 231(1): 351-364, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660260

RESUMO

Plants transition through juvenile and adult phases of vegetative development in a process known as vegetative phase change (VPC). In poplars (genus Populus) the differences between these stages are subtle, making it difficult to determine when this transition occurs. Previous studies of VPC in poplars have relied on plants propagated in vitro, leaving the natural progression of this process unknown. We examined developmental morphology of seed-grown and in vitro derived Populus tremula × alba (clone 717-1B4), and compared the phenotype of these to transgenics with manipulated miR156 expression, the master regulator of VPC. In seed-grown plants, most traits changed from node-to-node during the first 3 months of development but remained constant after node 25. Many traits remained unchanged in clones over-expressing miR156, or were enhanced when miR156 was lowered, demonstrating their natural progression is regulated by the miR156/SPL pathway. The characteristic leaf fluttering of Populus is one of these miR156-regulated traits. Vegetative development in plants grown from culture mirrored that of seed-grown plants, allowing direct comparison between plants often used in research and those found in nature. These results provide a foundation for further research on the role of VPC in the ecology and evolution of this economically important genus.


Assuntos
MicroRNAs , Populus , Regulação da Expressão Gênica de Plantas , Fenótipo , Folhas de Planta , Populus/genética
5.
New Phytol ; 222(2): 923-937, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565259

RESUMO

The role of the floral homeotic gene AGAMOUS (AG) and its close homologues in development of anemophilous, unisexual catkins has not previously been studied. We transformed two RNA interference (RNAi) constructs, PTG and its matrix-attachment-region flanked version MPG, into the early-flowering female poplar clone 6K10 (Populus alba) to suppress the expression of its two duplicate AG orthologues. By early 2018, six out of 22 flowering PTG events and 11 out of 12 flowering MPG events showed modified floral phenotypes in a field trial in Oregon, USA. Flowers in catkins from modified events had 'carpel-inside-carpel' phenotypes. Complete disruption of seed production was observed in seven events, and sterile anther-like organs in 10 events. Events with strong co-suppression of both the two AG and two SEEDSTICK (STK) paralogues lacked both seeds and associated seed hairs. Alterations in all of the modified floral phenotypes were stable over 4 yr of study. Trees from floral-modified events did not differ significantly (P < 0.05) from nonmodified transgenic or nontransgenic controls in biomass growth or leaf morphology. AG and STK genes show strong conservation of gene function during poplar catkin development and are promising targets for genetic containment of exotic or genetically engineered trees.


Assuntos
Flores/anatomia & histologia , Proteínas de Plantas/metabolismo , Populus/metabolismo , Interferência de RNA , Sementes/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Populus/anatomia & histologia , Populus/genética , Populus/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Árvores/crescimento & desenvolvimento
6.
Proc Natl Acad Sci U S A ; 111(27): 10001-6, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24951507

RESUMO

Trees from temperate latitudes transition between growth and dormancy to survive dehydration and freezing stress during winter months. We used activation tagging to isolate a dominant mutation affecting release from dormancy and identified the corresponding gene EARLY BUD-BREAK 1 (EBB1). We demonstrate through positioning of the tag, expression analysis, and retransformation experiments that EBB1 encodes a putative APETALA2/Ethylene responsive factor transcription factor. Transgenic up-regulation of the gene caused early bud-flush, whereas down-regulation delayed bud-break. Native EBB1 expression was highest in actively growing apices, undetectable during the dormancy period, but rapidly increased before bud-break. The EBB1 transcript was localized in the L1/L2 layers of the shoot meristem and leaf primordia. EBB1-overexpressing transgenic plants displayed enlarged shoot meristems, open and poorly differentiated buds, and a higher rate of cell division in the apex. Transcriptome analyses of the EBB1 transgenics identified 971 differentially expressed genes whose expression correlated with the EBB1 expression changes in the transgenic plants. Promoter analysis among the differentially expressed genes for the presence of a canonical EBB1-binding site identified 65 putative target genes, indicative of a broad regulatory context of EBB1 function. Our results suggest that EBB1 has a major and integrative role in reactivation of meristem activity after winter dormancy.


Assuntos
Proteínas de Plantas/fisiologia , Populus/fisiologia , Estações do Ano , Genes de Plantas , Mutação , Plantas Geneticamente Modificadas , Populus/genética , RNA Mensageiro/genética
7.
Plant Biotechnol J ; 14(2): 808-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26132805

RESUMO

Eucalyptus trees are among the most important species for industrial forestry worldwide. However, as with most forest trees, flowering does not begin for one to several years after planting which can limit the rate of conventional and molecular breeding. To speed flowering, we transformed a Eucalyptus grandis × urophylla hybrid (SP7) with a variety of constructs that enable overexpression of FLOWERING LOCUS T (FT). We found that FT expression led to very early flowering, with events showing floral buds within 1-5 months of transplanting to the glasshouse. The most rapid flowering was observed when the cauliflower mosaic virus 35S promoter was used to drive the Arabidopsis thaliana FT gene (AtFT). Early flowering was also observed with AtFT overexpression from a 409S ubiquitin promoter and under heat induction conditions with Populus trichocarpa FT1 (PtFT1) under control of a heat-shock promoter. Early flowering trees grew robustly, but exhibited a highly branched phenotype compared to the strong apical dominance of nonflowering transgenic and control trees. AtFT-induced flowers were morphologically normal and produced viable pollen grains and viable self- and cross-pollinated seeds. Many self-seedlings inherited AtFT and flowered early. FT overexpression-induced flowering in Eucalyptus may be a valuable means for accelerating breeding and genetic studies as the transgene can be easily segregated away in progeny, restoring normal growth and form.


Assuntos
Proteínas de Arabidopsis/metabolismo , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/genética , Flores/genética , Proteínas de Arabidopsis/genética , Cruzamentos Genéticos , Eucalyptus/anatomia & histologia , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Fenótipo , Pigmentação , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Pólen/fisiologia , Polinização , Reprodução , Sementes/fisiologia , Autofertilização , Transformação Genética
8.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325329

RESUMO

Plant regeneration is an important dimension of plant propagation and a key step in the production of transgenic plants. However, regeneration capacity varies widely among genotypes and species, the molecular basis of which is largely unknown. Association mapping methods such as genome-wide association studies (GWAS) have long demonstrated abilities to help uncover the genetic basis of trait variation in plants; however, the performance of these methods depends on the accuracy and scale of phenotyping. To enable a large-scale GWAS of in planta callus and shoot regeneration in the model tree Populus, we developed a phenomics workflow involving semantic segmentation to quantify regenerating plant tissues over time. We found that the resulting statistics were of highly non-normal distributions, and thus employed transformations or permutations to avoid violating assumptions of linear models used in GWAS. We report over 200 statistically supported quantitative trait loci (QTLs), with genes encompassing or near to top QTLs including regulators of cell adhesion, stress signaling, and hormone signaling pathways, as well as other diverse functions. Our results encourage models of hormonal signaling during plant regeneration to consider keystone roles of stress-related signaling (e.g. involving jasmonates and salicylic acid), in addition to the auxin and cytokinin pathways commonly considered. The putative regulatory genes and biological processes we identified provide new insights into the biological complexity of plant regeneration, and may serve as new reagents for improving regeneration and transformation of recalcitrant genotypes and species.


Assuntos
Estudo de Associação Genômica Ampla , Populus , Populus/genética , Genes de Plantas , Locos de Características Quantitativas , Ácidos Indolacéticos
9.
BMC Plant Biol ; 13: 92, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23799904

RESUMO

BACKGROUND: Cytosine DNA methylation (5mC) is an epigenetic modification that is important to genome stability and regulation of gene expression. Perturbations of 5mC have been implicated as a cause of phenotypic variation among plants regenerated through in vitro culture systems. However, the pattern of change in 5mC and its functional role with respect to gene expression, are poorly understood at the genome scale. A fuller understanding of how 5mC changes during in vitro manipulation may aid the development of methods for reducing or amplifying the mutagenic and epigenetic effects of in vitro culture and plant transformation. RESULTS: We investigated the in vitro methylome of the model tree species Populus trichocarpa in a system that mimics routine methods for regeneration and plant transformation in the genus Populus (poplar). Using methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq), we compared the methylomes of internode stem segments from micropropagated explants, dedifferentiated calli, and internodes from regenerated plants. We found that more than half (56%) of the methylated portion of the genome appeared to be differentially methylated among the three tissue types. Surprisingly, gene promoter methylation varied little among tissues, however, the percentage of body-methylated genes increased from 9% to 14% between explants and callus tissue, then decreased to 8% in regenerated internodes. Forty-five percent of differentially-methylated genes underwent transient methylation, becoming methylated in calli, and demethylated in regenerants. These genes were more frequent in chromosomal regions with higher gene density. Comparisons with an expression microarray dataset showed that genes methylated at both promoters and gene bodies had lower expression than genes that were unmethylated or only promoter-methylated in all three tissues. Four types of abundant transposable elements showed their highest levels of 5mC in regenerated internodes. CONCLUSIONS: DNA methylation varies in a highly gene- and chromosome-differential manner during in vitro differentiation and regeneration. 5mC in redifferentiated tissues was not reset to that in original explants during the study period. Hypermethylation of gene bodies in dedifferentiated cells did not interfere with transcription, and may serve a protective role against activation of abundant transposable elements.


Assuntos
Desdiferenciação Celular , Populus/citologia , Populus/genética , Técnicas de Cultura de Células , Células Cultivadas , Citosina/metabolismo , Metilação de DNA , Epigenômica , Populus/fisiologia , Transformação Genética
10.
Planta ; 237(6): 1483-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23455459

RESUMO

The Arabidopsis thaliana DDM1 (Decreased DNA Methylation) gene is necessary for the maintenance of DNA methylation and heterochromatin assembly. In Arabidopsis, ddm1 mutants exhibit strong but delayed morphological phenotypes. We used RNA interference (RNAi) to suppress transcripts of two orthologous DDM1 paralogs in Populus trichocarpa and examined effects on whole plant phenotypes during perennial growth and seasonal dormancy. The RNAi-PtDDM1 transgenic poplars showed a wide range of DDM1 transcript suppression; the most strongly suppressed line had 37.5 % of the expression of the non-transgenic control. Genomic cytosine methylation (mC %) was 11.1 % in the non-transgenic control, compared with 9.1 % for the transgenic event with lowest mC %, a reduction of 18.1 %. An evaluation of greenhouse growth directly after acclimation of in vitro grown plants showed no developmental or growth rate abnormalities associated with the decrease in PtDDM1 expression. However, after a dormancy cycle and growth outdoors, a mottled leaf phenotype appeared in some of the transgenic insertion events that had strongly reduced PtDDM1 expression and DNA methylation. The phenotypic consequences of reduced DDM1 activity and DNA methylation appears to increase with cumulative plant propagation and growth.


Assuntos
Metilação de DNA/genética , Dormência de Plantas/genética , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Populus/genética , Interferência de RNA , Transgenes/genética , Citosina/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fenótipo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/crescimento & desenvolvimento , Supressão Genética , Transformação Genética
11.
Plant Physiol ; 160(2): 1130-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904164

RESUMO

Semidwarfism has been used extensively in row crops and horticulture to promote yield, reduce lodging, and improve harvest index, and it might have similar benefits for trees for short-rotation forestry or energy plantations, reclamation, phytoremediation, or other applications. We studied the effects of the dominant semidwarfism transgenes GA Insensitive (GAI) and Repressor of GAI-Like, which affect gibberellin (GA) action, and the GA catabolic gene, GA 2-oxidase, in nursery beds and in 2-year-old high-density stands of hybrid poplar (Populus tremula × Populus alba). Twenty-nine traits were analyzed, including measures of growth, morphology, and physiology. Endogenous GA levels were modified in most transgenic events; GA(20) and GA(8), in particular, had strong inverse associations with tree height. Nearly all measured traits varied significantly among genotypes, and several traits interacted with planting density, including aboveground biomass, root-shoot ratio, root fraction, branch angle, and crown depth. Semidwarfism promoted biomass allocation to roots over shoots and substantially increased rooting efficiency with most genes tested. The increased root proportion and increased leaf chlorophyll levels were associated with changes in leaf carbon isotope discrimination, indicating altered water use efficiency. Semidwarf trees had dramatically reduced growth when in direct competition with wild-type trees, supporting the hypothesis that semidwarfism genes could be effective tools to mitigate the spread of exotic, hybrid, and transgenic plants in wild and feral populations.


Assuntos
Giberelinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Populus/genética , Transgenes , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Quimera/genética , Quimera/crescimento & desenvolvimento , Quimera/metabolismo , Clorofila/genética , Clorofila/metabolismo , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genótipo , Giberelinas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Transformação Genética
12.
Plant Cell Rep ; 32(3): 453-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283559

RESUMO

KEY MESSAGE : Auxin responsive promoter DR5 reporter system is functional in Populus to monitor auxin response in tissues including leaves, roots, and stems. We described the behavior of the DR5::GUS reporter system in stably transformed Populus plants. We found several similarities with Arabidopsis, including sensitivity to native and synthetic auxins, rapid induction after treatment in a variety of tissues, and maximal responses in root tissues. There were also several important differences from Arabidopsis, including slower time to maximum response and lower induction amplitude. Young leaves and stem sections below the apex showed much higher DR5 activity than did older leaves and stems undergoing secondary growth. DR5 activity was highest in cortex, suggesting high levels of auxin concentration and/or sensitivity in this tissue. Our study shows that the DR5 reporter system is a sensitive and facile system for monitoring auxin responses and distribution at cellular resolution in poplar.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Populus/fisiologia , Glucuronidase , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Populus/citologia , Populus/genética , Regeneração , Sensibilidade e Especificidade , Fatores de Tempo
13.
Hortic Res ; 10(8): uhad132, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37564267

RESUMO

Plant migration and gene flow from genetically modified or exotic trees to nearby lands or by crossing with wild relatives is a major public and regulatory concern. Many genetic strategies exist to mitigate potential gene flow; however, the long delay in onset of flowering is a severe constraint to research progress. We used heat-induced FT overexpression to speed assessment of the expected floral phenotypes after CRISPR knockout of poplar homologs of the key floral genes, LEAFY and AGAMOUS. We selected events with previously characterized CRISPR-Cas9 induced biallelic changes then re-transformed them with the Arabidopsis thaliana FLOWERING LOCUS T (AtFT) gene under control of either a strong constitutive promoter or a heat-inducible promoter. We successfully obtained flowering in both a male and female clones of poplar, observing a wide range of inflorescence and floral forms among flowers, ramets, and insertion events. Overall, flowers obtained from the selected LFY and AG targeted events were consistent with what would be predicted for loss-of-function of these genes. LFY-targeted events showed small catkins with leaf-like organs, AG-targeted events had nested floral organs consistent with reduction in floral determinacy and absence of well-formed carpels or anthers. These findings demonstrate the great developmental plasticity of Populus flowers during genetically accelerated flowering, which may be of horticultural value. They also provide an informative early view of floral phenotypes and apparent sterility from knockouts of both these gene targets.

14.
Plant Direct ; 7(7): e507, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37456612

RESUMO

Eucalyptus spp. are widely cultivated for the production of pulp, energy, essential oils, and as ornamentals. However, their dispersal from plantings, especially when grown as an exotic, can cause ecological disruptions. To provide new tools for prevention of sexual dispersal by pollen as well as to induce male-sterility for hybrid breeding, we studied the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated knockout of three floral genes in both FT-expressing (early-flowering) and non-FT genotypes. We report male-sterile phenotypes resulting from knockout of the homologs of all three genes, including one involved in meiosis and two regulating early stages of pollen development. The targeted genes were Eucalyptus homologs of REC8 (EREC8), TAPETAL DEVELOPMENT AND FUNCTION 1 (ETDF1), and HECATE3 (EHEC3-like). The erec8 knockouts yielded abnormal pollen grains and a predominance of inviable pollen, whereas the etdf1 and ehec3-like knockouts produced virtually no pollen. In addition to male-sterility, both erec8 and ehec3-like knockouts may provide complete sterility because the failure of erec8 to undergo meiosis is expected to be independent of sex, and ehec3-like knockouts produce flowers with shortened styles and no visible stigmas. When comparing knockouts to controls in wild-type (non-early-flowering) backgrounds, we did not find visible morphological or statistical differences in vegetative traits, including average single-leaf mass, stem volume, density of oil glands, or chlorophyll in leaves. Loss-of-function mutations in any of these three genes show promise as a means of inducing male- or complete sterility without impacting vegetative development.

15.
Hortic Res ; 10(8): uhad125, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560019

RESUMO

Adventitious rooting (AR) is critical to the propagation, breeding, and genetic engineering of trees. The capacity for plants to undergo this process is highly heritable and of a polygenic nature; however, the basis of its genetic variation is largely uncharacterized. To identify genetic regulators of AR, we performed a genome-wide association study (GWAS) using 1148 genotypes of Populus trichocarpa. GWASs are often limited by the abilities of researchers to collect precise phenotype data on a high-throughput scale; to help overcome this limitation, we developed a computer vision system to measure an array of traits related to adventitious root development in poplar, including temporal measures of lateral and basal root length and area. GWAS was performed using multiple methods and significance thresholds to handle non-normal phenotype statistics and to gain statistical power. These analyses yielded a total of 277 unique associations, suggesting that genes that control rooting include regulators of hormone signaling, cell division and structure, reactive oxygen species signaling, and other processes with known roles in root development. Numerous genes with uncharacterized functions and/or cryptic roles were also identified. These candidates provide targets for functional analysis, including physiological and epistatic analyses, to better characterize the complex polygenic regulation of AR.

16.
J Exp Bot ; 63(15): 5623-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22915748

RESUMO

This study describes functional characterization of two putative poplar PHOTOPERIOD RESPONSE 1 (PHOR1) orthologues. The expression and sequence analyses indicate that the two poplar genes diverged, at least partially, in function. PtPHOR1_1 is most highly expressed in roots and induced by short days, while PtPHOR1_2 is more uniformly expressed throughout plant tissues and is not responsive to short days. The two PHOR1 genes also had distinct effects on shoot and root growth when their expression was up- and downregulated transgenically. PtPHOR1_1 effects were restricted to roots while PtPHOR1_2 had similar effects on aerial and below-ground development. Nevertheless, both genes seemed to be upregulated in transgenic poplars that are gibberellin-deficient and gibberellin-insensitive, suggesting interplay with gibberellin signalling. PHOR1 suppression led to increased starch accumulation in both roots and stems. The effect of PHOR1 suppression on starch accumulation was coupled with growth-inhibiting effects in both roots and shoots, suggesting that PHOR1 is part of a mechanism that regulates the allocation of carbohydrate to growth or storage in poplar. PHOR1 downregulation led to significant reduction of xylem formation caused by smaller fibres and vessels suggesting that PHOR1 likely plays a role in the growth of xylem cells.


Assuntos
Fotoperíodo , Proteínas de Plantas/genética , Populus/genética , Amido/metabolismo , Madeira/crescimento & desenvolvimento , Biomassa , Regulação para Baixo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Fenótipo , Floema/citologia , Floema/genética , Floema/crescimento & desenvolvimento , Floema/metabolismo , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Populus/citologia , Populus/crescimento & desenvolvimento , Populus/metabolismo , Interferência de RNA , Transdução de Sinais , Xilema/citologia , Xilema/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
17.
Front Plant Sci ; 13: 805101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185983

RESUMO

Both the evolution of tree taxa and whole-genome duplication (WGD) have occurred many times during angiosperm evolution. Transcription factors are preferentially retained following WGD suggesting that functional divergence of duplicates could contribute to traits distinctive to the tree growth habit. We used gain- and loss-of-function transgenics, photoperiod treatments, and circannual expression studies in adult trees to study the diversification of three Populus FLOWERING LOCUS D-LIKE (FDL) genes encoding bZIP transcription factors. Expression patterns and transgenic studies indicate that FDL2.2 promotes flowering and that FDL1 and FDL3 function in different vegetative phenophases. Study of dominant repressor FDL versions indicates that the FDL proteins are partially equivalent in their ability to alter shoot growth. Like its paralogs, FDL3 overexpression delays short day-induced growth cessation, but also induces distinct heterochronic shifts in shoot development-more rapid phytomer initiation and coordinated delay in both leaf expansion and the transition to secondary growth in long days, but not in short days. Our results indicate that both regulatory and protein coding sequence variation contributed to diversification of FDL paralogs that has led to a degree of specialization in multiple developmental processes important for trees and their local adaptation.

18.
Plant Phenomics ; 2022: 9893639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059601

RESUMO

The abilities of plant biologists and breeders to characterize the genetic basis of physiological traits are limited by their abilities to obtain quantitative data representing precise details of trait variation, and particularly to collect this data at a high-throughput scale with low cost. Although deep learning methods have demonstrated unprecedented potential to automate plant phenotyping, these methods commonly rely on large training sets that can be time-consuming to generate. Intelligent algorithms have therefore been proposed to enhance the productivity of these annotations and reduce human efforts. We propose a high-throughput phenotyping system which features a Graphical User Interface (GUI) and a novel interactive segmentation algorithm: Semantic-Guided Interactive Object Segmentation (SGIOS). By providing a user-friendly interface and intelligent assistance with annotation, this system offers potential to streamline and accelerate the generation of training sets, reducing the effort required by the user. Our evaluation shows that our proposed SGIOS model requires fewer user inputs compared to the state-of-art models for interactive segmentation. As a case study of the use of the GUI applied for genetic discovery in plants, we present an example of results from a preliminary genome-wide association study (GWAS) of in planta regeneration in Populus trichocarpa (poplar). We further demonstrate that the inclusion of a semantic prior map with SGIOS can accelerate the training process for future GWAS, using a sample of a dataset extracted from a poplar GWAS of in vitro regeneration. The capabilities of our phenotyping system surpass those of unassisted humans to rapidly and precisely phenotype our traits of interest. The scalability of this system enables large-scale phenomic screens that would otherwise be time-prohibitive, thereby providing increased power for GWAS, mutant screens, and other studies relying on large sample sizes to characterize the genetic basis of trait variation. Our user-friendly system can be used by researchers lacking a computational background, thus helping to democratize the use of deep segmentation as a tool for plant phenotyping.

19.
Plant J ; 62(4): 674-88, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20202169

RESUMO

Members of the CENTRORADIALIS (CEN)/TERMINAL FLOWER 1 (TFL1) subfamily control shoot meristem identity, and loss-of-function mutations in both monopodial and sympodial herbaceous plants result in dramatic changes in plant architecture. We studied the degree of conservation between herbaceous and woody perennial plants in shoot system regulation by overexpression and RNA interference (RNAi)-mediated suppression of poplar orthologs of CEN, and the related gene MOTHER OF FT AND TFL 1 (MFT). Field study of transgenic poplars (Populus spp.) for over 6 years showed that downregulation of PopCEN1 and its close paralog, PopCEN2, accelerated the onset of mature tree characteristics, including age of first flowering, number of inflorescences and proportion of short shoots. Surprisingly, terminal vegetative meristems remained indeterminate in PopCEN1-RNAi trees, suggesting the possibility that florigen signals are transported to axillary mersitems rather than the shoot apex. However, the axillary inflorescences (catkins) of PopCEN1-RNAi trees contained fewer flowers than did wild-type catkins, suggesting a possible role in maintaining the indeterminacy of the inflorescence apex. Expression of PopCEN1 was significantly correlated with delayed spring bud flush in multiple years, and in controlled environment experiments, 35S::PopCEN1 and RNAi transgenics required different chilling times to release dormancy. Considered together, these results indicate that PopCEN1/PopCEN2 help to integrate shoot developmental transitions that recur during each seasonal cycle with the age-related changes that occur over years of growth.


Assuntos
Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Populus/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Populus/genética , Populus/metabolismo , Interferência de RNA , RNA de Plantas/genética , Análise de Sequência de DNA
20.
Planta ; 234(6): 1285-98, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21792553

RESUMO

We modified gibberellin (GA) metabolism and signaling in transgenic poplars using dominant transgenes and studied their effects for 3 years under field conditions. The transgenes that we employed either reduced the bioactive GAs, or attenuated their signaling. The majority of transgenic trees had significant and in many cases dramatic changes in height, crown architecture, foliage morphology, flowering onset, floral structure, and vegetative phenology. Most transgenes elicited various levels of height reduction consistent with the roles of GA in elongation growth. Several other growth traits were proportionally reduced, including branch length, internode distance, and leaf length. In contrast to elongation growth, stem diameter growth was much less affected, suggesting that semi-dwarf trees in dense stands might provide high levels of biomass production and carbon sequestration. The severity of phenotypic effects was strongly correlated with transgene expression among independent transgenic events, but often in a non-linear manner, the form of which varied widely among constructs. The majority of semi-dwarfed, transgenic plants showed delayed bud flush and early bud set, and expression of a native GAI transgene accelerated first time flowering in the field. All of the phenotypic changes observed in multiple years were stable over the 3 years of field study. Our results suggest that transgenic modification of GA action may be useful for producing semi-dwarf trees with modified growth and morphology for horticulture and other uses.


Assuntos
Giberelinas/metabolismo , Proteínas de Plantas/genética , Populus/fisiologia , Transdução de Sinais/fisiologia , Arabidopsis/genética , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Populus/anatomia & histologia , Populus/genética , Populus/crescimento & desenvolvimento , Análise de Componente Principal , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Análise de Regressão , Transgenes/genética , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA