Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biochem Biophys Res Commun ; 691: 149322, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38039833

RESUMO

BACKGROUND: Bupleurum (Bup), is a traditional effective medicine to treat colds and fevers in clinics. Multiple studies have demonstrated that Bup exhibites various biological activities, including cardioprotective effects, anti-inflammatory, anticancer, antipyretic, antimicrobial, and antiviral effects, etc. Currently, the effects of Bup on cardiac electrophysiology have not been reported yet. METHODS: Electrocardiogram recordings were used to investigate the effects of Bup on aconitine-induced arrhythmias. Patch-clamp techniques were used to explore the effects of Bup on APs and ion currents. RESULTS: Bup reduced the incidence of ventricular fibrillation (VF) and delayed the onset time of ventricular tachycardia (VT) in mice. Additionally, Bup (40 mg/mL) suppressed DADs induced by high-Ca2+ and shortened action potential duration at 50 % completion of repolarization (APD50) and action potential duration at 90 % completion of repolarization (APD90) to 60.89 % ± 8.40 % and 68.94 % ± 3.24 % of the control, respectively. Moreover, Bup inhibited L-type calcium currents (ICa.L) in a dose-dependent manner, with an IC50 value of 25.36 mg/mL. Furthermore, Bup affected the gated kinetics of L-type calcium channels by slowing down steady-state activation, accelerating the steady-state inactivation, and delaying the inactivation-recovery process. However, Bup had no effects on the Transient sodium current (INa.T), ATX II-increased late sodium current (INa.L), transient outward current (Ito), delayed rectifier potassium current (IK), or inward rectifier potassium current (IK1). CONCLUSION: Bup is an antiarrhythmic agent that may exert its antiarrhythmic effects by inhibiting L-type calcium channels.


Assuntos
Bupleurum , Canais de Cálcio Tipo L , Camundongos , Animais , Bupleurum/metabolismo , Miócitos Cardíacos/metabolismo , Antiarrítmicos/efeitos adversos , Arritmias Cardíacas , Sódio/metabolismo , Potássio/farmacologia , Potenciais de Ação
2.
Clin Lab ; 69(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37436388

RESUMO

BACKGROUND: Refractoriness to platelet transfusion has not been adequately studied in pediatric patients with thrombocytopenia. Our objectives were: (1) to describe the practice of platelet transfusion in pediatric patients with thrombocytopenia of various etiologies; (2) to assess the responsiveness to platelet transfusions and clinical variables affecting platelet transfusions response; and (3) to evaluate incidence of PTR. METHODS: A retrospective study included pediatric patients with thrombocytopenia admitted to a tertiary children's hospital who received ≥ 1 platelet transfusion during hospitalization. Responsiveness was measured by corrected count increment (CCI), poor platelet transfusion response (PPTR), and platelet transfusion refractoriness (PTR). RESULTS: A total of 334 patients were eligible for the study and received 1,164 transfusions, with a median of 2 (IQR: 1 - 5) platelet transfusions. Patients admitted with hematologic malignancies had the highest median number of platelet transfusions (5, IQR: 4 - 10). The median CCI of 1,164 platelet post-transfusions was 17.0 (IQR: 9.4 - 24.6) and the incidence of PPTR was 11.9%. Patients admitted with ITP had the lowest median CCI (7.6, IQR: 1.0 - 12.5) and the highest incidence of PPTR (36.4%, 8/22). Older age of platelet components, low doses of platelet transfusion, increasing number of platelet transfusions (≥ 5), splenomegaly, bleeding, DIC, shock, ECMO supported, and HLA antibody-positive were independent risk factors for PPTR. Finally, the incidence of PTR was 11.4%. CONCLUSIONS: Practical experience of clinicians regarding the use of apheresis platelets in pediatric patients is determined. Highlight that PTR is not a low probability event when apheresis platelets are received in pediatric patients.


Assuntos
Transfusão de Plaquetas , Trombocitopenia , Humanos , Criança , Transfusão de Plaquetas/efeitos adversos , Estudos Retrospectivos , Incidência , Trombocitopenia/epidemiologia , Trombocitopenia/terapia , Plaquetas
3.
Pflugers Arch ; 473(8): 1315-1327, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145500

RESUMO

Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca2+-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca2+]i) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca2+]i-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca2+]i-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca2+]i condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca2+-dependent PKC over-activation suppressed high [Ca2+]i-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.


Assuntos
Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Miócitos Cardíacos/fisiologia , Proteína Quinase C/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/prevenção & controle , Sistema de Condução Cardíaco/fisiopatologia , Terapia de Alvo Molecular , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteína Quinase C/antagonistas & inibidores , Proteínas Quinases/metabolismo , Coelhos
4.
Acta Pharmacol Sin ; 42(2): 209-217, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32612277

RESUMO

Eleutheroside B (EB) is the main active constituent derived from the Chinese herb Acanthopanax senticosus (AS) that has been reported to possess cardioprotective effects. In this study we investigated the effects of EB on cardiac electrophysiology and its suppression on atrial fibrillation (AF). Whole-cell recording was conducted in isolated rabbit atrial myocytes. The intracellular calcium ([Ca2+]i) concentration was measured using calcium indicator Fura-2/AM fluorescence. Monophasic action potential (MAP) and electrocardiogram (ECG) synchronous recordings were conducted in Langendorff-perfused rabbit hearts using ECG signal sampling and analysis system. We showed that EB dose-dependently inhibited late sodium current (INaL), transient sodium current (INaT), and sea anemone toxin II (ATX II)-increased INaL with IC50 values of 167, 1582, and 181 µM, respectively. On the other hand, EB (800 µM) did not affect L-type calcium current (ICaL), inward rectifier potassium channel current (IK), and action potential duration (APD). Furthermore, EB (300 µM) markedly decreased ATX II-prolonged the APD at 90% repolarization (APD90) and eliminated ATX II-induced early afterdepolarizations (EADs), delayed afterdepolarizations (DADs), and triggered activities (TAs). Moreover, EB (200 µM) significantly suppressed ATX II-induced Na+-dependent [Ca2+]i overload in atrial myocytes. In the Langendorff-perfused rabbit hearts, application of EB (200 µM) or TTX (2 µM) substantially decreased ATX II-induced incidences of atrial fibrillation (AF), ventricular fibrillation (VF), and heart death. These results suggest that augmented INaL alone is sufficient to induce AF, and EB exerts anti-AF actions mainly via blocking INaL, which put forward the basis of pharmacology for new clinical application of EB.


Assuntos
Fibrilação Atrial/prevenção & controle , Cardiotônicos/farmacologia , Glucosídeos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilpropionatos/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Venenos de Cnidários/toxicidade , Relação Dose-Resposta a Droga , Eletrocardiografia , Glucosídeos/administração & dosagem , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Fenilpropionatos/administração & dosagem , Coelhos , Bloqueadores dos Canais de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia
5.
J Cardiovasc Pharmacol ; 76(4): 437-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32675747

RESUMO

Increased late sodium current (INa) induces long QT syndrome 3 with increased risk of atrial fibrillation (AF). The role of atrial late INa in the induction of AF and in the treatment of AF was determined in this study. AF parameters were measured in isolated rabbit hearts exposed to late INa enhancer and inhibitors. Late INa from isolated atrial and ventricular myocytes were measured using whole-cell patch-clamp techniques. We found that induced-AF by programmed S1S2 stimulation and spontaneous episodes of AF were recorded in hearts exposed to either low (0.1-3 nM) or high (3-10 nM) concentrations of ATX-II (n = 10). Prolongations in atrial monophasic action potential duration at 90% completion of repolarization and effective refractory period by ATX-II (0.1-15 nM) were greater in hearts paced at slow than at fast rates (n = 5-10, P < 0.05). Both endogenous and ATX-II-enhanced late INa density were greater in atrial than that in ventricular myocytes (n = 9 and 8, P < 0.05). Eleclazine and ranolazine reduced AF window and AF burden in association with the inhibition of both endogenous and enhanced atrial late INa with half maximal inhibitory concentrations (IC50) of 1.14 and 9.78, and 0.94 and 8.31 µM, respectively. The IC50s for eleclazine and ranolazine to inhibit peak INa were 20.67 and 101.79 µM, respectively, in atrial myocytes. In conclusion, enhanced late INa in atrial myocytes increases the susceptibility for AF. Inhibition of either endogenous or enhanced late INa, with increased atrial potency of drugs is feasible for the treatment of AF.


Assuntos
Fibrilação Atrial/metabolismo , Função Atrial , Átrios do Coração/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/prevenção & controle , Função Atrial/efeitos dos fármacos , Estimulação Cardíaca Artificial , Venenos de Cnidários , Modelos Animais de Doenças , Feminino , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Preparação de Coração Isolado , Miócitos Cardíacos/efeitos dos fármacos , Coelhos , Período Refratário Eletrofisiológico , Bloqueadores dos Canais de Sódio/farmacologia , Fatores de Tempo
6.
Acta Pharmacol Sin ; 39(3): 357-370, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29072259

RESUMO

Barbaloin (10-ß-D-glucopyranosyl-1,8-dihydroxy-3-(hydroxymethyl)-9(10H)-anthracenone) is extracted from the aloe plant and has been reported to have anti-inflammatory, antitumor, antibacterial, and other biological activities. Here, we investigated the effects of barbaloin on cardiac electrophysiology, which has not been reported thus far. Cardiac action potentials (APs) and ionic currents were recorded in isolated rabbit ventricular myocytes using whole-cell patch-clamp technique. Additionally, the antiarrhythmic effect of barbaloin was examined in Langendorff-perfused rabbit hearts. In current-clamp recording, application of barbaloin (100 and 200 µmol/L) dose-dependently reduced the action potential duration (APD) and the maximum depolarization velocity (Vmax), and attenuated APD reverse-rate dependence (RRD) in ventricular myocytes. Furthermore, barbaloin (100 and 200 µmol/L) effectively eliminated ATX II-induced early afterdepolarizations (EADs) and Ca2+-induced delayed afterdepolarizations (DADs) in ventricular myocytes. In voltage-clamp recording, barbaloin (10-200 µmol/L) dose-dependently inhibited L-type calcium current (ICa.L) and peak sodium current (INa.P) with IC50 values of 137.06 and 559.80 µmol/L, respectively. Application of barbaloin (100, 200 µmol/L) decreased ATX II-enhanced late sodium current (INa.L) by 36.6%±3.3% and 71.8%±6.5%, respectively. However, barbaloin up to 800 µmol/L did not affect the inward rectifier potassium current (IK1) or the rapidly activated delayed rectifier potassium current (IKr) in ventricular myocytes. In Langendorff-perfused rabbit hearts, barbaloin (200 µmol/L) significantly inhibited aconitine-induced ventricular arrhythmias. These results demonstrate that barbaloin has potential as an antiarrhythmic drug.


Assuntos
Antracenos/farmacologia , Arritmias Cardíacas/prevenção & controle , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Aconitina/antagonistas & inibidores , Aconitina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/induzido quimicamente , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Preparação de Coração Isolado , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Coelhos , Venenos de Escorpião/antagonistas & inibidores , Venenos de Escorpião/farmacologia
7.
Pharmacology ; 102(5-6): 253-261, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138939

RESUMO

AIM: Sodium houttuyfonate (SH), a chemical compound originating from Houttuynia cordata, has been reported to have anti-inflammatory, antibacterial, and antifungal effects, as well as cardioprotective effects. In this study, we investigated the effects of SH on cardiac electrophysiology, because to the best of our knowledge, this issue has not been previously investigated. METHODS: We used the whole-cell patch-clamp technique to explore the effects of SH on peak sodium current (INa.P) and late sodium current (INa.L) in isolated rabbit ventricular myocytes. To test the drug safety of SH, we also investigated the effect of SH on rapidly activated delayed rectifier potassium current (IKr). RESULTS: SH (1, 10, 50, and 100 µmol/L) inhibited INa.P in a concentration-dependent manner with an IC50 of 78.89 µmol/L. In addition, SH (100 µmol/L) accelerated the steady state inactivation of INa.P. Moreover, 50 and 100 µmol/L SH inhibited Anemonia sulcata toxin II (ATX II)-increased INa.L by 30.1 and 57.1%, respectively. However, SH (50 and 100 µmol/L) only slightly affected IKr. CONCLUSIONS: The inhibitory effects of SH on ATX II-increased INa.L may underlie the electrophysiological mechanisms of the cardioprotective effects of SH; SH has the potential to be an effective and safe antiarrhythmic drug.


Assuntos
Alcanos/farmacologia , Venenos de Cnidários/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Sulfitos/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Antiarrítmicos/farmacologia , Venenos de Cnidários/farmacologia , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Coelhos , Canais de Sódio/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-28559252

RESUMO

The aim of this study was to investigate the prevalence of the polymyxin resistance gene mcr-1 in Enterobacteriaceae from environmental water sources in Hangzhou, China. Colistin-resistant bacteria were isolated from environmental water samples using an enrichment broth culture method, were screened for mcr-1, and then were analyzed for the location and transferability of mcr-1 Isolates positive for mcr-1 were further examined to determine their susceptibility profiles and were screened for the presence of additional resistance genes. Twenty-three mcr-1-positive isolates (16 Escherichia coli, two Citrobacter freundii, two Klebsiella oxytoca, two Citrobacter braakii, and one Enterobacter cloacae) were isolated from 7/9 sampling locations; of those, eight mcr-1-positive isolates also contained ß-lactamase-resistance genes, eight contained qnrS, and 10 contained oqx No mcr-2-positive isolates were identified. The majority of isolates demonstrated a low to moderate level of colistin resistance. Transconjugation was successfully conducted from 14 of the 23 mcr-1-positive isolates, and mcr-1 was identified on plasmids ranging from 60 to 220 kb in these isolates. Conjugation and hybridization experiments revealed that mcr-1 was chromosome-borne in only three isolates. Pulsed-field gel electrophoresis showed that the majority of E. coli isolates belonged to different clonal lineages. Multilocus sequence typing analysis revealed that sequence type 10 (ST10) was the most prevalent, followed by ST181 and ST206. This study demonstrates the utility of enrichment broth culture for identifying environmental mcr-1-positive isolates. Furthermore, it highlights the importance of responsible agriculture and clinical use of polymyxins to prevent further widespread dissemination of polymyxin-resistant pathogens.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/genética , Plasmídeos/genética , Microbiologia da Água , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , China , Colistina/farmacologia , Eletroforese em Gel de Campo Pulsado , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Tipagem de Sequências Multilocus , Polimixinas/farmacologia , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
9.
Exp Physiol ; 102(7): 818-834, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28436159

RESUMO

NEW FINDINGS: What is the central question of this study? Hypoxia-induced increase in late sodium current (INa,L ) is associated with conditions causing cellular Ca2+ overload and contributes to arrhythmogenesis in the ventricular myocardium. The INa,L is an important drug target. We investigated intracellular signal transduction pathways involved in modulation of INa,L during hypoxia. What is the main finding and its importance? Hypoxia caused increases in INa,L , reverse Na+ -Ca2+ exchange current and diastolic [Ca2+ ], which were attenuated by inhibitors of Ca2+ -calmodulin-dependent protein kinase II (CaMKII) and protein kinase C and by a Ca2+ chelator. The findings suggest that CaMKII, protein kinase C and Ca2+ all participate in mediation of the effect of hypoxia to increase INa,L . Hypoxia leads to augmentation of the late sodium current (INa,L ) and cellular Na+ loading, increased reverse Na+ -Ca2+ exchange current (reverse INCX ) and intracellular Ca2+ loading in rabbit ventricular myocytes. The purpose of this study was to determine the intracellular signal transduction pathways involved in the modulation of INa,L during hypoxia in ventricular myocytes. Whole-cell and cell-attached patch-clamp techniques were used to record INa,L , and the whole-cell mode was also used to record reverse INCX and to study intercellular signal transduction mechanisms that mediate the increased INa,L . Dual excitation fluorescence photomultiplier systems were used to record the calcium transient in ventricular myocytes. Hypoxia caused increases of INa,L and reverse INCX . These increases were attenuated by KN-93 (an inhibitor of Ca2+ -calmodulin-dependent protein kinase II), bisindolylmaleimide VI (BIM; an inhibitor of protein kinase C) and BAPTA AM (a Ca2+ chelator). KN-93, BIM and BAPTA AM had no effect on INa,L in normoxia. In studies of KN-93, hypoxia alone increased the density of INa,L from -0.31 ± 0.02 to -0.66 ± 0.03 pA pF-1 (n = 6, P < 0.01 versus control) and the density of reverse INCX from 1.02 ± 0.06 to 1.91 ± 0.20 pA pF-1 (n = 7, P < 0.01 versus control) in rabbit ventricular myocytes. In the presence of 1 µm KN-93, the densities of INa,L and reverse INCX during hypoxia were significantly attenuated to -0.44 ± 0.03 (n = 6, P < 0.01 versus hypoxia) and 1.36 ± 0.15 pA pF-1 (n = 7, P < 0.01 versus hypoxia), respectively. In studies of BIM, hypoxia increased INa,L from -0.30 ± 0.03 to -0.60 ± 0.03 pA pF-1 (n = 6, P < 0.01 versus control) and reverse INCX from 0.91 ± 0.10 to 1.71 ± 0.27 pA pF-1 (n = 6, P < 0.01 versus control). In the presence of 1 µm BIM, the densities of INa,L and reverse INCX during hypoxia were significantly attenuated to -0.48 ± 0.02 (n = 6, P < 0.01 versus hypoxia) and 1.33 ± 0.21 pA pF-1 (n = 6, P < 0.01 versus hypoxia), respectively. In studies of BAPTA AM, hypoxia increased INa,L from -0.26 ± 0.04 to -0.63 ± 0.05 pA pF-1 (n = 6, P < 0.01 versus control) and reverse INCX from 0.86 ± 0.09 to 1.68 ± 0.35 pA pF-1 (n = 6, P < 0.01 versus control). The effects of hypoxia on INa,L and reverse INCX were significantly attenuated in the presence of 1 mm BAPTA AM to -0.39 ± 0.02 (n = 6, P < 0.01 versus hypoxia) and 1.12 ± 0.27 pA pF-1 (n = 6, P < 0.01 versus hypoxia), respectively. Results of single-channel studies showed that hypoxia apparently increased the mean open probability and mean open time of sodium channels. These effects were inhibited by either 1 µm KN-93 or 1 mm BAPTA AM. The suppressant effects of drug interventions were reversed upon washout. In addition, KN-93, BIM and BAPTA AM also reversed the hypoxia-enhanced diastolic Ca2+ concentration and the attenuated amplitude of the [Ca2+ ]i transient, maximal velocities of Ca2+ increase and Ca2+ decay. In summary, the findings suggest that Ca2+ -calmodulin-dependent protein kinase II, protein kinase C and Ca2+ all participate in mediation of the effect of hypoxia to increase INa,L .


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C/metabolismo , Sódio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Hipóxia Celular , Ventrículos do Coração/metabolismo , Indóis/farmacologia , Maleimidas/farmacologia , Técnicas de Patch-Clamp/métodos , Coelhos , Canais de Sódio/metabolismo
10.
Pacing Clin Electrophysiol ; 40(12): 1412-1425, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28972668

RESUMO

BACKGROUND: An increase in the late sodium current (INaL ) causes intracellular Na+ overload and subsequently intracellular Ca2+ ([Ca2+ ]i ) overload via the stimulated reverse Na+ -Ca2+ exchange (NCX). Wenxin Keli (WXKL) is an effective antiarrhythmic Chinese herb extract, but the underlying mechanisms are unclear. METHODS AND RESULTS: The INaL , NCX current (INCX ), L-type Ca2+ current (ICaL ), and action potentials were recorded using the whole-cell patch-clamp technique in rabbit ventricular myocytes. Myocyte [Ca2+ ]i transients were measured using a dual excitation fluorescence photomultiplier system. WXKL decreased the enhanced INaL , reverse INCX , diastolic [Ca2+ ]i , and the amplitude of Ca2+ transients induced by sea anemone toxin II (ATX II, a specific INaL channel opener) in a concentration-dependent manner. Hypoxia increased INaL , INCX , and diastolic [Ca2+ ]i , and decreased amplitude of [Ca2+ ]i transients. Hypoxia-reoxygenation aggravated these changes and induced spontaneous [Ca2+ ]i transients and hypercontraction in 86% cells (6/7). The application of WXKL during hypoxia or reoxygenation periods decreased the increased INaL , INCX , and diastolic [Ca2+ ]i , and prevented those events in 82% cells (9/11) under hypoxia-reoxygenation conditions. WXKL also inhibited the ICaL in a dose-dependent manner. Furthermore, WXKL shortened the action potential duration and completely abolished ATX II-induced early afterdepolarizations from 9/9 to /9. In isolated heart electrocardiogram recordings, WXKL inhibited ischemia-reperfusion induced ventricular premature beats and tachycardia. CONCLUSIONS: WXKL attenuated [Ca2+ ]i overload induced by hypoxia-reoxygenation in ventricular myocytes through inhibiting INaL and ICaL and prevents arrhythmias. This could, at least partly, contribute to the antiarrhythmic effects of WXKL.


Assuntos
Antiarrítmicos/farmacologia , Cálcio/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxigênio/metabolismo , Sódio/metabolismo , Animais , Hipóxia Celular/fisiologia , Feminino , Masculino , Coelhos
11.
Pharmacology ; 99(5-6): 226-235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28132058

RESUMO

AIMS: To investigate the effects of ketamine on human hyperpolarization-activated cyclic nucleotide-gated (hHCN) 1, 2, 4 channel currents expressed in Xenopus oocytes and spontaneous action potentials (APs) of rabbit sinoatrial node (SAN). METHODS: The 2-electrode voltage clamp and standard microelectrode techniques were respectively applied to record hHCN channels currents expressed in Xenopus oocytes and APs of SAN separated from rabbit heart. RESULTS: Ketamine (1-625 µmol/L) blocked hHCN1, 2, and 4 currents with IC50 of 67.0, 89.1, and 84.0 µmol/L, respectively, in a concentration-dependent manner. The currents were rapidly blocked by ketamine and partially recovered after washout. The steady-state activation curves of hHCN1, 2, and 4 currents demonstrated a concentration-dependent shift to the left and the rates of activation were significantly decelerated. But ketamine blocked hHCN channels in a voltage-independence and non-use-dependent manner, and did not modify the voltage dependence of activation and reversal potentials. Furthermore, ketamine suppressed phase-4 spontaneous depolarization rate in isolated rabbit SAN and decreased the beat rates in a concentration-dependent manner. CONCLUSION: Ketamine could inhibit hHCN channels expressed in Xenopus oocytes in a concentration-dependent manner as a close-state blocker and decrease beat rates of isolated rabbit SAN. This study may provide novel insights into other unexplained actions of ketamine.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Ketamina/farmacologia , Nó Sinoatrial/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Humanos , Oócitos , Coelhos , Nó Sinoatrial/metabolismo , Transfecção , Xenopus laevis
12.
Acta Pharmacol Sin ; 37(11): 1432-1441, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27569391

RESUMO

AIM: The augmentation of late sodium current (INa.L) not only causes intracellular Na+ accumulation, which results in intracellular Ca2+ overload via the reverse mode of the Na+/Ca2+ exchange current (reverse-INCX), but also prolongs APD and induces early afterdepolarizations (EAD), which can lead to arrhythmia and cardiac dysfunction. Thus, the inhibition of INa.L is considered to be a potential way for therapeutic intervention in ischemia and heart failure. In this study we investigated the effects of tolterodine (Tol), a competitive muscarinic receptor antagonist, on normal and veratridine (Ver)-augmented INa.L, reverse-INCX and APD in isolated rabbit ventricular myocytes, which might contribute to its cardioprotective activity. METHODS: Rabbit ventricular myocytes were prepared. The INa.L and reverse-INCX were recorded in voltage clamp mode, whereas action potentials and Ver-induced early afterdepolarizations (EADs) were recorded in current clamp mode. Drugs were applied via superfusion. RESULTS: Tol (3-120 nmol/L) concentration-dependently inhibited the normal and Ver-augmented INa.L with IC50 values of 32.08 nmol/L and 42.47 nmol/L, respectively. Atropine (100 µmol/L) did not affect the inhibitory effects of Tol (30 nmol/L) on Ver-augmented INa.L. In contrast, much high concentrations of Tol was needed to inhibit the transient sodium current (INa.T) with an IC50 value of 183.03 µmol/L. In addition, Tol (30 nmol/L) significantly shifted the inactivation curve of INa.T toward a more depolarizing membrane potential without affecting its activation characteristics. Moreover, Tol (30 nmol/L) significantly decreased Ver-augmented reverse-INCX. Tol (30 nmol/L) increased the action potential duration (APD) by 16% under the basal conditions. Ver (20 µmol/L) considerably extended the APD and evoked EADs in 18/24 cells (75%). In the presence of Ver, Tol (30 nmol/L) markedly decreased the APD and eliminated EADs (0/24 cells). CONCLUSION: Tol inhibits normal and Ver-augmented INaL and decreases Ver-augmented reverse-INCX. In addition, Tol reverses the prolongation of the APD and eliminates the EADs induced by Ver, thus prevents Ver-induced arrhythmia.


Assuntos
Antiarrítmicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/fisiologia , Trocador de Sódio e Cálcio/metabolismo , Tartarato de Tolterodina/farmacologia , Veratridina/farmacologia , Potenciais de Ação , Animais , Feminino , Ventrículos do Coração/citologia , Técnicas In Vitro , Masculino , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Coelhos
13.
Exp Physiol ; 100(4): 399-409, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25641541

RESUMO

NEW FINDINGS: What is the central question of this study? What are the effects of protein kinase C (PKC) and Ca(2+) -calmodulin-dependent protein kinase II (CaMKII) on late sodium current (INaL ), reverse Na(+) -Ca(2+) exchange current (reverse INCX ) or intracellular Ca(2+) levels changed by ouabain? What is the main finding and its importance? Ouabain, even at low concentrations (0.5-8.0 µm), can increase INaL and reverse INCX , and these effects may contribute to the effect of the glycoside to increase Ca(2+) transients and contractility. Both PKC and CaMKII activities may mediate or modulate these processes. It has been reported that the cardiac glycoside ouabain can increase the late sodium current (INaL ), as well as the diastolic intracellular calcium concentration and contractile shortening. Whether an increase of INaL participates in a pathway that can mediate the positive inotropic response to ouabain is unknown. We therefore determined the effects of ouabain on INaL , reverse Na(+) -Ca(2+) exchange current (reverse INCX ), intracellular Ca(2+) ([Ca(2+) ]i ) levels and contractile shortening in rabbit isolated ventricular myocytes. Ouabain (0.1-8 µm) markedly increased INaL and reverse INCX in a concentration-dependent manner, with significant effects at concentrations as low as 0.5 and 1 µm. These effects of ouabain were suppressed by the INaL inhibitors TTX and ranolazine, the protein kinase C inhibitor bisindolylmaleimide and the Ca(2+) -calmodulin-dependent protein kinase II inhibitor KN-93. The enhancement by 0.5 µm ouabain of ventricular myocyte contractility and intracellular Ca(2+) transients was suppressed by 2.0 µm TTX. We conclude that ouabain, even at low concentrations (0.5-8.0 µm), can increase INaL and reverse INCX , and these effects may contribute to the effect of the glycoside to increase Ca(2+) transients and contractility. Both protein kinase C and Ca(2+) -calmodulin-dependent protein kinase II activities may mediate or modulate these processes.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Ouabaína/administração & dosagem , Proteína Quinase C/metabolismo , Sódio/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cardiotônicos/administração & dosagem , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/administração & dosagem , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Coelhos
14.
Acta Pharmacol Sin ; 36(11): 1327-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26456586

RESUMO

AIM: Intracellular Ca(2+) ([Ca(2+)]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na(+) overload and subsequently [Ca(2+)]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca(2+)]i overload. The aim of this study was to investigate the effects of ketamine on Na(+)-dependent Ca(2+) overload in ventricular myocytes in vitro. METHODS: Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca(2+) current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca(2+)]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system. RESULTS: Ketamine (20, 40, 80 µmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 µmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 µmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca(2+)]i, and the rate and amplitude of [Ca(2+)]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 µmol/L) or by ketamine (40 µmol/L). CONCLUSION: Ketamine protects isolated rabbit ventricular myocytes against [Ca(2+)]i overload by inhibiting INaL and ICaL.


Assuntos
Cálcio/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Peróxido de Hidrogênio/metabolismo , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Coelhos
15.
Am J Physiol Heart Circ Physiol ; 306(3): H455-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24322614

RESUMO

An increase of cardiac late sodium current (INa.L) is arrhythmogenic in atrial and ventricular tissues, but the densities of INa.L and thus the potential relative contributions of this current to sodium ion (Na(+)) influx and arrhythmogenesis in atria and ventricles are unclear. In this study, whole-cell and cell-attached patch-clamp techniques were used to measure INa.L in rabbit left atrial and ventricular myocytes under identical conditions. The density of INa.L was 67% greater in left atrial (0.50 ± 0.09 pA/pF, n = 20) than in left ventricular cells (0.30 ± 0.07 pA/pF, n = 27, P < 0.01) when elicited by step pulses from -120 to -20 mV at a rate of 0.2 Hz. Similar results were obtained using step pulses from -90 to -20 mV. Anemone toxin II (ATX II) increased INa.L with an EC50 value of 14 ± 2 nM and a Hill slope of 1.4 ± 0.1 (n = 9) in atrial myocytes and with an EC50 of 21 ± 5 nM and a Hill slope of 1.2 ± 0.1 (n = 12) in ventricular myocytes. Na(+) channel open probability (but not mean open time) was greater in atrial than in ventricular cells in the absence and presence of ATX II. The INa.L inhibitor ranolazine (3, 6, and 9 µM) reduced INa.L more in atrial than ventricular myocytes in the presence of 40 nM ATX II. In summary, rabbit left atrial myocytes have a greater density of INa.L and higher sensitivities to ATX II and ranolazine than rabbit left ventricular myocytes.


Assuntos
Acetanilidas/farmacologia , Venenos de Cnidários/farmacologia , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Miócitos Cardíacos/fisiologia , Piperazinas/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Sódio/metabolismo , Potenciais de Ação , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Coelhos , Ranolazina
16.
J Cardiovasc Pharmacol ; 64(1): 60-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24705174

RESUMO

Ranolazine attenuates cardiac arrhythmic activity associated with hypoxia and hydrogen peroxide (H2O2) by inhibition of late sodium current (late INa). The mechanism of ranolazine's action on Na channels was investigated using whole-cell and single-channel recording from guinea pig isolated ventricular myocytes. Hypoxia increased whole-cell late INa from -0.48 ± 0.02 to -3.99 ± 0.07 pA/pF. Ranolazine at 3 and 9 µmol/L reduced the hypoxia-induced late INa by 16% ± 3% and 55% ± 3%, respectively. Hypoxia increased the mean open probability and open time of Na-channel late openings from 0.016 ± 0.001 to 0.064 ± 0.007 milliseconds and from 0.693 ± 0.043 to 1.081 ± 0.098 milliseconds, respectively. Ranolazine at 3 and 9 µmol/L attenuated the hypoxia-induced increase of open probability by 19% ± 7% and 61% ± 1%, and increase of open time by 26% ± 19% and 74 ± 21%, respectively. H2O2 increased the mean open probability and open time of Na-channel late openings from 0.013 ± 0.002 to 0.107 ± 0.015 milliseconds and from 0.689 ± 0.075 to 1.487 ± 0.072 milliseconds, respectively. Ranolazine at 3 and 6 µmol/L reduced the H2O2-induced increase of mean open probability by 60% ± 7% and 95% ± 2%, and the increase of mean open time by 31% ± 21% and 82% ± 8%. In conclusion, the inhibition by ranolazine of hypoxia- and H2O2-stimulated late INa is due to reduction of both the open probability and open time of Na-channel late openings.


Assuntos
Acetanilidas/farmacologia , Antiarrítmicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/farmacologia , Canais de Sódio/efeitos dos fármacos , Acetanilidas/administração & dosagem , Animais , Antiarrítmicos/administração & dosagem , Hipóxia Celular , Relação Dose-Resposta a Droga , Feminino , Cobaias , Peróxido de Hidrogênio/farmacologia , Masculino , Miócitos Cardíacos/metabolismo , Piperazinas/administração & dosagem , Ranolazina , Canais de Sódio/metabolismo , Fatores de Tempo
17.
J Pharmacol Sci ; 124(3): 365-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24572816

RESUMO

Ranolazine (RAN), a novel antianginal agent, inhibits the increased late sodium current (INa.L) under many pathological conditions. In this study, the whole-cell patch-clamp technique was used to explore the effects of RAN on INa.L and reverse Na(+)/Ca(2+) exchange current (INCX) in rabbit ventricular myocytes during hypoxia.Tetrodotoxin (TTX) at 2 µM or RAN at 9 µM decreased significantly INa.L and reverse INCX under normoxia and RAN had no further effects on both currents in the presence of TTX. RAN (3, 6, and 9 µM) attenuated hypoxia-increased INa.L and reverse INCX in a concentration-dependent manner. Hypoxia-increased INa.L and reverse INCX were inhibited by 2 µM TTX, whereas 9 µM RAN applied sequentially did not further decrease both currents. In another group, after both currents were decreased by 9 µM RAN, 2 µM TTX had no further effects in the presence of Ran. In monophasic action potential (MAP) recording, early after-depolarizations (EADs) were suppressed by RAN (9 µM) during hypoxia. In conclusion, RAN decreased reverse INCX by inhibiting INa.L in normoxia, concentration-dependently attenuated the increase of INa.L, which thereby decreased the reverse INCX, and obviously relieved EADs during hypoxia.


Assuntos
Acetanilidas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ventrículos do Coração/citologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Piperazinas/farmacologia , Trocador de Sódio e Cálcio/metabolismo , Sódio/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Técnicas de Patch-Clamp , Coelhos , Ranolazina , Tetrodotoxina/farmacologia
18.
Heart Rhythm ; 21(2): 184-196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924963

RESUMO

BACKGROUND: More than a hundred genetic loci have been associated with atrial fibrillation (AF). But the exact mechanism remains unclear and the treatment needs to be improved. OBJECTIVE: This study aimed to investigate the mechanism and potential treatment of NPPA mutation-associated AF. METHODS: Nppa knock-in (KI, p.I137T) rats were generated, and cardiac function was evaluated. Blood pressure was recorded using a tail-cuff system. The expression levels were measured using real-time polymerase chain reaction, enzyme-linked immunosorbent assay or Western blot analysis, and RNA-sequence analysis. Programmed electrical stimulation, patch clamp, and multielectrode array were used to record the electrophysical characteristics. RESULTS: Mutant rats displayed downregulated expression of atrial natriuretic peptide but elevated blood pressure and enlarged left atrial end-diastolic diameter. Further, gene topology analysis suggested that the majority of differently expressed genes in Nppa KI rats were related to inflammation, electrical remodeling, and structural remodeling. The expression levels of C-C chemokine ligand 5 and galectin-3 involved in remodeling were higher, while there were declined levels of Nav1.5, Cav1.2, and connexin 40. AF was more easily induced in KI rats. Electrical remodeling included abbreviated action potentials, effective refractory period, increased late sodium current, and reduced calcium current, giving rise to conduction abnormalities. These electrophysiological changes could be reversed by the late sodium current blocker ranolazine and the Nav1.8 blocker A-803467. CONCLUSION: Our findings suggest that structural remodeling related to inflammation and fibrosis and electrical remodeling involved in late sodium current underly the major effects of the Nppa (p.I137T) variant to induce AF, which can be attenuated by the late sodium current blocker and Nav1.8 blocker.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Procainamida , Animais , Ratos , Potenciais de Ação/fisiologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Fator Natriurético Atrial , Remodelamento Atrial/fisiologia , Átrios do Coração , Inflamação/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Procainamida/análogos & derivados , Sódio/metabolismo
19.
Transfus Clin Biol ; 30(4): 382-386, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37321534

RESUMO

OBJECTIVE: To investigate the influence of restrictive and liberal red blood cell suspension (RBCs) transfusions on the prognosis of premature infants and to analyze the influencing factors to provide a reference for the transfusion strategy of preterm infants. METHODS: Retrospective analysis was conducted on 85 cases of anemic premature infants treated in our center, including 63 cases in the restrictive transfusion group and 22 in the liberal transfusion group. RESULTS: RBCs transfusions were effective in both groups, and there were no statistically significant differences in post-transfusion hemoglobin and hematocrit between the two groups (P > 0.05). The outcome events: the duration of ventilatory support was statistically prolonger in the restrictive group compared with the liberal group (P < 0.001); however, the differences in mortality, the increased weight before discharge, and length of stay in the hospital within the two groups were not statistically significant (P = 0.237, 0.36 and 0.771, respectively). Univariate survival analysis showed that age, birth weight, Apgar 1 min and Apgar 10 min scores were the influencing factors for death, with P values of 0.035, 0.004, <0.001, and 0.013, respectively; COX regression analysis showed that Apgar 1 min score was an independent factor of the survival time of preterm infants (P = 0.002). CONCLUSION: Compared with the restrictive transfusion group, liberal transfusion patients presented a shorter duration of ventilatory support, which is more beneficial to the prognosis of premature infants.


Assuntos
Transfusão de Eritrócitos , Recém-Nascido Prematuro , Lactente , Humanos , Recém-Nascido , Estudos Retrospectivos , Hemoglobinas/análise , Prognóstico , Eritrócitos/química
20.
Am J Physiol Cell Physiol ; 302(8): C1141-51, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22189558

RESUMO

An increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) augments late sodium current (I(Na.L)) in cardiomyocytes. This study tests the hypothesis that both Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) mediate the effect of increased [Ca(2+)](i) to increase I(Na.L). Whole cell and open cell-attached patch clamp techniques were used to record I(Na.L) in rabbit ventricular myocytes dialyzed with solutions containing various concentrations of [Ca(2+)](i). Dialysis of cells with [Ca(2+)](i) from 0.1 to 0.3, 0.6, and 1.0 µM increased I(Na.L) in a concentration-dependent manner from 0.221 ± 0.038 to 0.554 ± 0.045 pA/pF (n = 10, P < 0.01) and was associated with an increase in mean Na(+) channel open probability and prolongation of channel mean open-time (n = 7, P < 0.01). In the presence of 0.6 µM [Ca(2+)](i), KN-93 (10 µM) and bisindolylmaleimide (BIM, 2 µM) decreased I(Na.L) by 45.2 and 54.8%, respectively. The effects of KN-93 and autocamtide-2-related inhibitory peptide II (2 µM) were not different. A combination of KN-93 and BIM completely reversed the increase in I(Na.L) as well as the Ca(2+)-induced changes in Na(+) channel mean open probability and mean open-time induced by 0.6 µM [Ca(2+)](i). Phorbol myristoyl acetate increased I(Na.L) in myocytes dialyzed with 0.1 µM [Ca(2+)](i); the effect was abolished by Gö-6976. In summary, both CaMKII and PKC are involved in [Ca(2+)](i)-mediated augmentation of I(Na.L) in ventricular myocytes. Inhibition of CaMKII and/or PKC pathways may be a therapeutic target to reduce myocardial dysfunction and cardiac arrhythmias caused by calcium overload.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Quinase C/metabolismo , Sódio/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Feminino , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Indóis/farmacologia , Masculino , Maleimidas/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/enzimologia , Peptídeos/farmacologia , Proteína Quinase C/antagonistas & inibidores , Coelhos , Canais de Sódio/metabolismo , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA