Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541566

RESUMO

The construction of lunar surface roads is conducive to improving the efficiency of lunar space transportation. The use of lunar in situ resources is the key to the construction of lunar bases. In order to explore the strength development of a simulated lunar soil geopolymer at lunar temperature, geopolymers with different sodium hydroxide (NaOH) contents were prepared by using simulated lunar regolith materials. The temperature of the high-temperature section of the moon was simulated as the curing condition, and the difference in compressive strength between dry curing and sealed curing was studied. The results show that the high-temperature range of lunar temperature from 52.7 °C to 76.3 °C was the suitable curing period for the geopolymers, and the maximum strength of 72 h was 6.31 MPa when the NaOH content was 8% in the sealed-curing mode. The 72 h strength had a maximum value of 6.87 MPa when the NaOH content was 12% under dry curing. Choosing a suitable solution can reduce the consumption of activators required for geopolymers to obtain unit strength, effectively reduce the quality of materials transported from the Earth for lunar infrastructure construction, and save transportation costs. The microscopic results show that the simulated lunar soil generated gel substances and needle-like crystals under the alkali excitation of NaOH, forming a cluster and network structure to improve the compressive strength of the geopolymer.

2.
Materials (Basel) ; 16(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570151

RESUMO

In order to study the performance of a new cement-based grouting material under the coupling of freeze-thaw cycle and sulfate erosion, tests related to the performance of the new grouting material were designed and carried out to analyze the damage mechanism of the material under the coupling of freezing and thawing and Na2SO4 solution by testing the mass change, relative dynamic elastic modulus, compressive strength loss and mineralogical and microstructural properties of the new grouting material. The test results show that with the increase in the number of freeze-thaw cycles, the mass loss and compressive strength loss of the specimens in 15% Na2SO4 solution gradually increased, and the relative dynamic elastic modulus showed a decreasing trend. When the freeze-thaw cycle number was 30, the mass loss rate, compressive strength loss rate and relative dynamic elastic modulus of the specimens in Na2SO4 solution were 4.17%, 24.59% and 84.3%, respectively, which showed better erosion and frost durability. Mineralogical and microstructural analysis showed that SO42- in solution led to the decomposition of the C-S-H gel and the formation of CaSO4•2H2O inside the specimen, and the internal deterioration was exacerbated by the widening of the crack width being aggravated, suggesting that the rate of material deterioration under the coupling of the two factors increased.

3.
Materials (Basel) ; 15(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36363308

RESUMO

Recycled rubber aggregate (RRA) made from ground tire rubber has been promoted for its light weight and shock resistance. The high alkalinity of alkali-activated slag mortar has a modification effect on the surface of RRA. This paper studies the performance of alkali-activated slag mortar using RRA as aggregate (RASM), which has significance for applications in low-carbon building materials. The orthogonal test analysis method was used to analyze the significance and correlation of the main variables of the test. The dynamic energy absorption capacity and crushing state of RASM under the synergistic effect of various factors were studied using the separating Hopkinson pressure bar (SHPB) test system. The energy absorption characteristics and failure modes of RASM were analyzed by SEM and microscopic pore characterization. The results show that the increase of the alkali equivalent of the mix ratio will increase the peak value of the absorption energy of the specimen. When the size of the RRA is between 0.48 mm~0.3 mm, the dynamic energy absorption of the specimen will reach its peak value. Although the increase in the total volume of RRA will reduce the energy absorption capacity of RASM specimens, its crack resistance is enhanced.

4.
Materials (Basel) ; 14(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946394

RESUMO

In order to study the durability of concrete materials subjected to sulfate attack, in a sulfate attack environment, a series of concrete tests considering different fly ash contents and erosion times were conducted. The mechanical properties and the micro-structure of concrete under sulfate attack were studied based on the following: uniaxial compressive strength test, split tensile test, ultrasonic impulse method, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties were compressive strength, splitting tensile strength, and relative dynamic elastic modulus, respectively. Additionally, according to the damage mechanical theory, experimental results and micro-structure analysis, the damage evolution process of concrete under a sulfate attack environment were studied in detail. Finally, according to the sulfate attack time and fly ash content, a damage model of the sulfate attack of the binary surface was established. The specific results are as follows: under the action of sulfate attack, the change law of the rate of mass change, relative dynamic modulus of elasticity, corrosion resistance coefficient of compressive strength, and the corrosion resistance coefficient of the splitting tensile strength of concrete all increase first and then decrease. Under the same erosion time, concrete mixed with 10% fly ash content has the best sulfate resistance. Through data regression, the damage evolution equation of the sulfate attack was developed and there is an exponential function relationship among the different damage variables. The binary curved surface regression effect of the concrete damage and the erosion time and the amount of fly ash is significant, which can predict deterioration of concrete damage under sulfate attack. During the erosion time, the combined expansion of ettringite and gypsum caused micro cracks. With an increase of corrosion time, micro cracks developed and their numbers increased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA