Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 717: 150028, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714016

RESUMO

Mycoplasma pneumoniae (MP),as the most commonly infected respiratory pathogen in community-acquired pneumonia in preschool children,has becoming a prominent factor affecting children's respiratory health.Currently, there is a lack of easy, rapid, and accurate laboratory testing program for MP infection, which causes comparatively difficulty for clinical diagnostic.Here,we utilize loop-mediated isothermal amplification (LAMP) to amplify and characterize the P1 gene of MP, combined with nucleic acid lateral flow (NALF) for fast and visuallized detection of MP.Furthermore, we evaluated and analyzed the sensitivity, specificity and methodological consistency of the method.The results showed that the limit of detection(LoD) of MP-LAMP-NALF assay was down to 100 copys per reaction and there was no cross-reactivity with other pathogens infected the respiratory system. The concordance rate between MP-LAMP-NALF assay with quantitative real-time PCR was 94.3 %,which exhibiting excellent testing performance.We make superior the turnaround time of the MP-LAMP-NALF assay, which takes only about 50 min. In addition, there is no need for precision instruments and no restriction on the laboratory site.Collectively, LAMP-NALF assay targeting the P1 gene for Mycoplasma pneumoniae detection was a easy, precise and visual test which could be widely applied in outpatient and emergency departments or primary hospitals.When further optimized, it could be used as "point-of-care testing" of pathogens or multiple testing for pathogens.


Assuntos
Técnicas de Diagnóstico Molecular , Mycoplasma pneumoniae , Técnicas de Amplificação de Ácido Nucleico , Pneumonia por Mycoplasma , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade , Limite de Detecção , DNA Bacteriano/genética
2.
Cell Mol Neurobiol ; 44(1): 35, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630150

RESUMO

An increasing body of research suggests that promoting microglial autophagy hinders the neuroinflammation initiated though the NLRP3 inflammasome activation in Alzheimer's disease (AD). The function of FoxG1, a crucial transcription factor involved in cell survival by regulating mitochondrial function, remains unknown during the AD process and neuroinflammation occurs. In the present study, we firstly found that Aß peptides induced AD-like neuroinflammation upregulation and downregulated the level of autophagy. Following low-dose Aß25-35 stimulation, FoxG1 expression and autophagy exhibited a gradual increase. Nevertheless, with high-concentration Aß25-35 treatment, progressive decrease in FoxG1 expression and autophagy levels as the concentration of Aß25-35 escalated. In addition, FoxG1 has a positive effect on cell viability and autophagy in the nervous system. In parallel with the Aß25-35 stimulation, we employed siRNA to decrease the expression of FoxG1 in N2A cells. A substantial reduction in autophagy level (Beclin1, LC3II, SQSTM1/P62) and a notable growth in inflammatory response (NLRP3, TNF-α, and IL-6) were observed. In addition, we found FoxG1 overexpression owned the effect on the activation of AMPK/mTOR autophagy pathway and siRNA-FoxG1 successfully abolished this effect. Lastly, FoxG1 suppressed the NLRP3 inflammasome and enhanced the cognitive function in AD-like mouse model induced by Aß25-35. Confirmed by cellular and animal experiments, FoxG1 suppressed NLRP3-mediated neuroinflammation, which was strongly linked to autophagy regulated by AMPK/mTOR. Taken together, FoxG1 may be a critical node in the pathologic progression of AD and has the potential to serve as therapeutic target.


Assuntos
Doença de Alzheimer , Fatores de Transcrição Forkhead , Inflamassomos , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Proteínas Quinases Ativadas por AMP , Autofagia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR , RNA Interferente Pequeno , Fatores de Transcrição Forkhead/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA