Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 660, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919661

RESUMO

BACKGROUND: Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. METHODS: We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. RESULTS: The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein-protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. CONCLUSIONS: This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels.


Assuntos
Camelus , Leite , Animais , Gravidez , Feminino , Camelus/genética , Lactação/genética , Parto , Perfilação da Expressão Gênica
2.
Anal Chem ; 94(15): 5866-5874, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384662

RESUMO

Because there are great demands of distinguishing multiple chemically similar analytes, chemical sensors for multivariate analyses have been developed rapidly in the past few decades. However, designing luminescent discriminative sensors based on a monosystem has been a challenge until now. In this work, we first develop a triemitting luminescent discriminative platform named RGB@TLU-2 with three different emission centers: blue-emitting center (BDC-NH2), green-emitting (Tb@BDC-SO3-), and red-emitting center (rhodamine B, RhB). The different luminescent mechanisms (ligand emission, LMET emission, guest emission) in these emission centers endow RGB@TLU-2 with high cross-reactivity, which is essential for discriminating applications. To balance the three luminescent centers, all variables in the synthesis process are optimized carefully. Surprisingly, the RGB@TLU-2 shows a variety of luminescent response patterns when immersed into 12 inorganic anions. Two unsupervised multidimensional analysis methods, (principal component analysis and hierarchical cluster analysis), are used to explore the relationship between these anions. On the basis of the luminescent response of analytes, 5 response modes are obtained and 12 inorganic anions are classified into 6 groups. The sensing mechanisms are discussed in detail. Detection limits of typical anions Cr2O72-, PO43-, ClO-, and NO2- are calculated as 2.895 × 10-8, 6.353 × 10-6, 1.134 × 10-5, and 4.56 × 10-4 mol/L, respectively. Furthermore, the RGB@TLU-2 also shows the ability to distinguish 4 (Fe3+, Fe2+, Cu2+ and Cr3+) of 12 metal ions and 3 (Trp, Pro, and Arg) of 11 amino acids.


Assuntos
Estruturas Metalorgânicas , Ânions/análise , Íons , Luminescência , Estruturas Metalorgânicas/química , Metais
3.
Inorg Chem ; 61(3): 1349-1359, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34995465

RESUMO

In this work, a novel luminescent hybrid material with double emission centers (Eu(TTA)0.2@9-1-UMOF) is successfully prepared, adopting a feasible design strategy. Initially, the second ligand 1,2,4-benzenetricarboxylic acid (H3BTC) is encapsulated based on a solid solution approach, which effectively improves the ligand-based emission intensity of the original LMOF and provides functional sites for introducing the second luminescent center; then, Eu3+ as the red emission source is loaded into the frameworks through a coordination post-synthetic modification method; finally, to balance the emission intensity at 613 nm (Eu3+) and 465 nm (1,4-naphthalenedicarboxylic acid (H2NDC)), 2-thenoyltrifluoroacetone (TTA) as a powerful antenna is introduced. Given the outstanding luminescence properties and structural stability of Eu(TTA)0.2@9-1-UMOF, it is further developed as a ratiometric sensor for detecting 1-hydroxypyrene (1-HP, the biomarker of polycyclic aromatic hydrocarbons (PAHs)) and Cu2+, which promotes the pre-diagnosis of human health. Notably, Eu(TTA)0.2@9-1-UMOF exhibits excellent selective recognition ability for both 1-HP and Cu2+ with high sensitivity (LOD = 4.06 × 10-6 mg/mL, 3.85 × 10-7 mol/L, respectively) and fast response speed. In addition, Eu(TTA)0.2@9-1-UMOF as a fluorescent probe shows great potential for the determination of 1-HP and Cu2+ in actual samples. More importantly, this work widens the road for the development of dual/multiple LMOF-based sensors for analytical applications.

4.
BMC Vet Res ; 18(1): 360, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171581

RESUMO

BACKGROUND: In camels, nasopharyngeal myiasis is caused by the larvae of Cephalopina titillator, which parasitize the tissues of nasal and paranasal sinuses, pharynx, and larynx. C. titillator infestation adversely affects the health of camels and decreases milk and meat production and even death. However, the C. titillator infestation in Bactrian camels has not been widely studied. METHODS: The present study was conducted to determine the prevalence and risk factors of C. titillator in Bactrian camels of northwestern Xinjiang. Suspected larvae recovered from infested camels were evaluated for C. titillator by microscopy and polymerase chain reaction. Nucleotide sequences of the partial mitochondrial cytochrome c oxidase subunit I (COX1) and cytochrome b (CYTB) genes from the C. titillator of camels were aligned from the NCBI database. Furthermore, the gross and histopathological alterations associated with C. titillator infestation were evaluated via pathological examination. RESULTS: Of 1263 camels examined 685 (54.2%) camels were infested with suspected C. titillator larvae. Different larval stages were topically detected in the nasal passages and pharynx of the camel heads. Microscopy analysis of the pharyngeal mucosa tissue revealed necrotic tissue debris and some inflammatory cells. Molecular detection of the larval COX1 and CYTB genes indicated that pathogen collected in Bactrian camels was C. titillator. The epidemiological study demonstrated that the prevalence rate of C.titillator infestation was significantly higher in camels of Bestierek Town Pasture (67.2%) and Karamagai Town Pasture (63.6%) compared to Kitagel Town Pasture (38.7%) and Qibal Town Pasture (35.8%) (P < 0.05). No significant difference was observed between the prevalence rates in male (52.6%) and female (54.6%) camels (P > 0.05). The prevalence was higher in warm (64.2%) than that in cold (48.4%) seasons (P < 0.001). The prevalence in camels with non-nomadic method (67.2%) was significantly higher than in animals with nomadic method (47.5%) (P < 0.001). The prevalence of C.titillator infestation was significantly higher in animals of aged 5-10 (60.1%) and aged > 10 (61.1%) years old compared to those of aged < 5 (31.7%) years old camels (P < 0.001). CONCLUSION: Our results confirm that there is a high prevalence of C. titillator in Bactrian camels from Xinjiang, closely related to age, season, pasture environment, and husbandry methods. Developing prevention, diagnosis, and control programs to prevent transmission is necessary.


Assuntos
Dípteros , Miíase , Animais , Camelus , China/epidemiologia , Citocromos b , Complexo IV da Cadeia de Transporte de Elétrons , Feminino , Larva , Masculino , Miíase/epidemiologia , Miíase/veterinária , Prevalência
5.
Front Microbiol ; 15: 1385860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962142

RESUMO

Colibacillosis caused by Avian pathogenic Escherichia coli (APEC), including peritonitis, respiratory tract inflammation and ovaritis, is recognized as one of the most common and economically destructive bacterial diseases in poultry worldwide. In this study, the characteristics and inhibitory potential of phages were investigated by double-layer plate method, transmission electron microscopy, whole genome sequencing, bioinformatics analysis and animal experiments. The results showed that phages C-3 and G21-7 isolated from sewage around goose farms infected multiple O serogroups (O1, O2, O18, O78, O157, O26, O145, O178, O103 and O104) Escherichia coli (E.coli) with a multiplicity of infection (MOI) of 10 and 1, respectively. According to the one-step growth curve, the incubation time of both bacteriophage C-3 and G21-7 was 10 min. Sensitivity tests confirmed that C-3 and G21-6 are stable at 4 to 50 °C and pH in the range of 4 to 11. Based on morphological and phylogenetic analysis, phages C-3 and G21-7 belong to Enterococcus faecalis (E. faecalis) phage species of the genus Saphexavirus of Herelleviridae family. According to genomic analysis, phage C-3 and G21-7 were 58,097 bp and 57,339 bp in size, respectively, with G+C content of 39.91% and 39.99%, encoding proteins of 97 CDS (105 to 3,993 bp) and 96 CDS (105 to 3,993 bp), and both contained 2 tRNAs. Both phages contained two tail proteins and holin-endolysin system coding genes, and neither carried resistance genes nor virulence factors. Phage mixture has a good safety profile and has shown good survival probability and feed efficiency in both treatment and prophylaxis experiments with one-day-old goslings. These results suggest that phage C-3 and G21-7 can be used as potential antimicrobials for the prevention and treatment of APEC.

6.
Front Vet Sci ; 10: 1196950, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342620

RESUMO

Introduction: The demand for camel milk, which has unique therapeutic properties, is increasing. The mammary gland is the organ in mammals responsible for the production and quality of milk. However, few studies have investigated the genes or pathways related to mammary gland growth and development in Bactrian camels. This study aimed to compare the morphological changes in mammary gland tissue and transcriptome expression profiles between young and adult female Bactrian camels and to explore the potential candidate genes and signaling pathways related to mammary gland development. Methods: Three 2 years-old female camels and three 5 years-old adult female camels were maintained in the same environment. The parenchyma of the mammary gland tissue was sampled from the camels using percutaneous needle biopsy. Morphological changes were observed using hematoxylin-eosin staining. High-throughput RNA sequencing was performed using the Illumina HiSeq platform to analyze changes in the transcriptome between young and adult camels. Functional enrichment, pathway enrichment, and protein-protein interaction networks were also analyzed. Gene expression was verified using quantitative real-time polymerase chain reaction (qRT-PCR). Results: Histomorphological analysis showed that the mammary ducts and mammary epithelial cells in adult female camels were greatly developed and differentiated from those in young camels. Transcriptome analysis showed that 2,851 differentially expressed genes were obtained in the adult camel group compared to the young camel group, of which 1,420 were upregulated, 1,431 were downregulated, and 2,419 encoded proteins. Functional enrichment analysis revealed that the upregulated genes were significantly enriched for 24 pathways, including the Hedgehog signaling pathway which is closely related to mammary gland development. The downregulated genes were significantly enriched for seven pathways, among these the Wnt signaling pathway was significantly related to mammary gland development. The protein-protein interaction network sorted the nodes according to the degree of gene interaction and identified nine candidate genes: PRKAB2, PRKAG3, PLCB4, BTRC, GLI1, WIF1, DKK2, FZD3, and WNT4. The expression of fifteen genes randomly detected by qRT-PCR showed results consistent with those of the transcriptome analysis. Discussion: Preliminary findings indicate that the Hedgehog, Wnt, oxytocin, insulin, and steroid biosynthesis signaling pathways have important effects on mammary gland development in dairy camels. Given the importance of these pathways and the interconnections of the involved genes, the genes in these pathways should be considered potential candidate genes. This study provides a theoretical basis for elucidating the molecular mechanisms associated with mammary gland development and milk production in Bactrian camels.

7.
J Colloid Interface Sci ; 601: 427-436, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34090023

RESUMO

Herein, we propose a new strategy for designing new types of wide range pH-sensitive metal-organic frameworks (MOFs) with double luminescent centers on UiO-66-2OH. The UiO-66-2OH has a ligands-based emission at 530 nm. To introduce another luminescent center, PMA (1,2,4,5-benzenetetracarboxylic acid), as the functional site, is used to substitute the initial ligand, BDC-2OH (2,5-dihydroxyterephthalic acid), of UiO-66-2OH. Eu3+ ions, another luminescent center at 613 nm, are coordinated to the free carboxyl group on PMA. Finally, TTA (2-Thenoyltrifluoroacetone) is coordinated with Eu3+ ions to balance the emission at 613 nm (Eu3+ ions) and 530 nm (BDC-2OH). For the sake of both strong emissions, we explored the loading levels of PMA. The optimized structure is Eu(TTA)@MUM5 ("MUM" is the abbreviation of "Mixed ligand UiO-66-2OH MOFs" and "5" represents the molar percentage of PMA is 50%), which exhibits strong emission at 530 nm (alkaline solution) and 613 nm (neutral solution). Remarkably, the synthesized material has an exponential relationship (R2 = 0.9973) over the pH range of 1.87 to 9.65 and a linear relationship (R2 = 0.9987) when pH = 11.01-13.35. Further experiments have proved that Eu(TTA)@MUM5 could distinguish different amino acids. Based on that, we build an information transferring circle with two coding modes on Eu(TTA)@MUM5 using aseptic acid and arginine as coding factors.


Assuntos
Estruturas Metalorgânicas , Aminoácidos , Concentração de Íons de Hidrogênio , Íons , Luminescência
8.
Dalton Trans ; 49(44): 15663-15671, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146643

RESUMO

In this work, a series of transparent luminescent MOF thin films are designed and prepared by assembling lanthanide functionalized UiO-67 (Ln(TTA/TAA)@UMOF, Ln = Eu, Tb, Er, Nd, TTA = 2-thenoyltrifluoroacetone, TAA = 1,1,1-trifluoropentane-2,4-dione) on organosilane linker (L) modified Al2O3 (A) using lanthanide ions as the bridge. Notably, Ln(TTA/TAA)@UMOF is synthesized by introducing lanthanide ions and TTA/TAA into the framework of the UMOF via a facile and non-destructive post-synthesis modification (PSM) strategy. Because there are multiple antennas including L, the ligand of UMOF, and ß-diketone (TTA/TAA) transferring energy to lanthanide ions, these thin films exhibit excellent luminescence properties. Interestingly, the Eu@UMOF-Eu-LA film can selectively recognize ammonia without the interference of other indoor pollutant gases. Further investigation reveals that the Eu@UMOF-Eu-LA film sensor shows superior performances including quick response, outstanding selectivity and high sensitivity (LOD = 9 ppm) towards ammonia. These results illustrate that the Eu@UMOF-Eu-LA film has enormous potential to detect ammonia practically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA