Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Psychiatry ; 29(8): 2496-2509, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38503925

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions, communication deficits and repetitive behaviors. A study of autistic human subjects has identified RFWD2 as a susceptibility gene for autism, and autistic patients have 3 copies of the RFWD2 gene. The role of RFWD2 as an E3 ligase in neuronal functions, and its contribution to the pathophysiology of ASD, remain unknown. We generated RFWD2 knockin mice to model the human autistic condition of high gene dosage of RFWD2. We found that heterozygous knockin (Rfwd2+/-) male mice exhibited the core symptoms of autism. Rfwd2+/- male mice showed deficits in social interaction and communication, increased repetitive and anxiety-like behavior, and spatial memory deficits, whereas Rfwd2+/- female mice showed subtle deficits in social communication and spatial memory but were normal in anxiety-like, repetitive, and social behaviors. These autistic-like behaviors in males were accompanied by a reduction in dendritic spine density and abnormal synaptic function on layer II/III pyramidal neurons in the prelimbic area of the medial prefrontal cortex (mPFC), as well as decreased expression of synaptic proteins. Impaired social behaviors in Rfwd2+/- male mice were rescued by the expression of ETV5, one of the major substrates of RFWD2, in the mPFC. These findings indicate an important role of RFWD2 in the pathogenesis of autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Modelos Animais de Doenças , Dosagem de Genes , Comportamento Social , Animais , Masculino , Camundongos , Feminino , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Sinapses/metabolismo , Sinapses/genética , Ansiedade/genética , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/genética , Memória Espacial/fisiologia , Interação Social , Células Piramidais/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674721

RESUMO

Klotho (KL) is a glycosyl hydrolase and aging-suppressor gene. Stress is a risk factor for depression and anxiety, which are highly comorbid with each other. The aim of this study is to determine whether KL is regulated by estrogen and plays an important role in sex differences in stress resilience. Our results showed that KL is regulated by estrogen in rat hippocampal neurons in vivo and in vitro and is essential for the estrogen-mediated increase in the number of presynaptic vesicular glutamate transporter 1 (Vglut1)-positive clusters on the dendrites of hippocampal neurons. The role of KL in sex differences in stress response was examined in rats using 3-week chronic unpredictable mild stress (CUMS). CUMS produced a deficit in spatial learning and memory, anhedonic-like behaviors, and anxiety-like behaviors in male but not female rats, which was accompanied by a reduction in KL protein levels in the hippocampus of male but not female rats. This demonstrated the resilience of female rats to CUMS. Interestingly, the knockdown of KL protein levels in the rat hippocampus of both sexes caused a decrease in stress resilience in both sexes, especially in female rats. These results suggest that the regulation of KL by estrogen plays an important role in estrogen-mediated synapse formation and that KL plays a critical role in the sex differences in cognitive deficit, anhedonic-like behaviors, and anxiety-like behaviors induced by chronic stress in rats, highlighting an important role of KL in sex differences in stress resilience.


Assuntos
Depressão , Caracteres Sexuais , Ratos , Animais , Masculino , Feminino , Depressão/metabolismo , Ansiedade , Transtornos de Ansiedade/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Estrogênios/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(40): 20169-20179, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31455734

RESUMO

Despite accumulating evidence demonstrating the essential roles played by neuropeptides, it has proven challenging to use this information to develop therapeutic strategies. Peptidergic signaling can involve juxtacrine, paracrine, endocrine, and neuronal signaling, making it difficult to define physiologically important pathways. One of the final steps in the biosynthesis of many neuropeptides requires a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), and lack of amidation renders most of these peptides biologically inert. PAM, an ancient integral membrane enzyme that traverses the biosynthetic and endocytic pathways, also affects cytoskeletal organization and gene expression. While mice, zebrafish, and flies lacking Pam (PamKO/KO ) are not viable, we reasoned that cell type-specific elimination of Pam expression would generate mice that could be screened for physiologically important and tissue-specific deficits. Conditional PamcKO/cKO mice, with loxP sites flanking the 2 exons deleted in the global PamKO/KO mouse, were indistinguishable from wild-type mice. Eliminating Pam expression in excitatory forebrain neurons reduced anxiety-like behavior, increased locomotor responsiveness to cocaine, and improved thermoregulation in the cold. A number of amidated peptides play essential roles in each of these behaviors. Although atrial natriuretic peptide (ANP) is not amidated, Pam expression in the atrium exceeds levels in any other tissue. Eliminating Pam expression in cardiomyocytes increased anxiety-like behavior and improved thermoregulation. Atrial and serum levels of ANP fell sharply in PAM myosin heavy chain 6 conditional knockout mice, and RNA sequencing analysis identified changes in gene expression in pathways related to cardiac function. Use of this screening platform should facilitate the development of therapeutic approaches targeted to peptidergic pathways.


Assuntos
Peptídeos/metabolismo , Transdução de Sinais , Animais , Pressão Sanguínea , Regulação da Temperatura Corporal/genética , Regulação da Expressão Gênica , Hipocampo/fisiologia , Locomoção , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos/genética , Fenótipo
4.
Mol Psychiatry ; 24(9): 1369-1382, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30899091

RESUMO

Alzheimer's disease (AD) is characterized by the presence of neuritic plaques in which dystrophic neurites (DNs) are typical constituents. We recently showed that DNs labeled by antibodies to the tubular endoplasmic reticulum (ER) protein reticulon-3 (RTN3) are enriched with clustered tubular ER. However, multi-vesicle bodies are also found in DNs, suggesting that different populations of DNs exist in brains of AD patients. To understand how different DNs evolve to surround core amyloid plaques, we monitored the growth of DNs in AD mouse brains (5xFAD and APP/PS1ΔE9 mice) by multiple approaches, including two-dimensional and three-dimensional (3D) electron microscopy (EM). We discovered that a pre-autophagosome protein ATG9A was enriched in DNs when a plaque was just beginning to develop. ATG9A-positive DNs were often closer to the core amyloid plaque, whereas RTN3 immunoreactive DNs were mostly located in the outer layers of ATG9A-positive DNs. Proteins such as RAB7 and LC3 appeared in DNs at later stages during plaque growth, likely accumulated as a part of large autophagy vesicles, and were distributed relatively furthest from the core amyloid plaque. Reconstructing the 3D structure of different morphologies of DNs revealed that DNs in AD mouse brains were constituted in three layers that are distinct by enriching different types of vesicles, as validated by immune-EM methods. Collectively, our results provide the first evidence that DNs evolve from dysfunctions of pre-autophagosomes, tubular ER, mature autophagosomes, and the ubiquitin proteasome system during plaque growth.


Assuntos
Doença de Alzheimer/metabolismo , Neuritos/patologia , Distrofias Neuroaxonais/patologia , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Distrofias Neuroaxonais/classificação , Distrofias Neuroaxonais/diagnóstico por imagem , Placa Amiloide/metabolismo , Proteínas de Transporte Vesicular/metabolismo
6.
Stress ; 23(3): 318-327, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31556781

RESUMO

D2 receptors (D2Rs) located in both pre- and postsynaptic membranes of medium spiny neurons (MSNs) in the nucleus accumbens (NAc) are involved in the stress response and associated behaviors. The role of D2Rs in chronic unpredictable stress (CUS)-induced depression-like behaviors is not clear. Quinpirole (a D2R agonist) and eticlopride (a D2R antagonist) were stereotactically delivered into the NAc before Sprague Dawley rats underwent CUS. CUS-induced depression-like behaviors were accompanied by a significant decrease in both the dopamine (DA) level and D2R expression in the NAc. Eticlopride reversed CUS-induced depression-like behavior and rescued the DA levels in the NAc, and microinjection of DA into the NAc of CUS individuals had the same effect as eticlopride. By contrast, delivery of quinpirole into the NAc of control animals induced depression-like behaviors accompanied by a decrease in the DA level in the NAc. These results show that DA plays a key role in CUS-induced depression-like behaviors and the D2R exerts a presynaptic negative feedback on DA levels during CUS. Microinjection of quinpirole into the NAc also decreased the level of the kalirin-7 protein in the NAc of both control and stressed animals, while eticlopride increased its level in the NAc of rats. In agreement with these results, intraperitoneal injection of eticlopride in mice also caused an increase in both the kalirin-7 protein level in the NAc and spine density in MSNs, while quinpirole reduced them. These results suggest that regulation of kalirin-7 through D2R in the NAc is a general pathway in rats and mice, and is involved in CUS-induced depression-like behaviors. Kalirin-7 may be directly regulated through the D2R postsynaptic pathway or indirectly through the presynaptic pathway in the NAc. The interaction between D2R and kalirin-7 needs to be investigated further.


Assuntos
Depressão , Estresse Psicológico , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Fatores de Troca do Nucleotídeo Guanina , Camundongos , Núcleo Accumbens/metabolismo , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo
7.
Endocr Res ; 45(2): 84-101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31608702

RESUMO

Estrogen (E2) modulates a wide range of neural functions such as spine formation, synaptic plasticity, and neurotransmission in the hippocampus. Dendritic spines and synapse numbers in hippocampal neurons of female rats cyclically fluctuate across the estrous cycle, but the key genes responsible for these fluctuations are still unknown. In order to address this question, we explore the hippocampal transcriptome via RNA-sequencing (RNA-seq) at the proestrus (PE) and estrus (ES) stages in female rats. At standard fold-change selection criteria, 37 differentially expressed genes (DEGs) were found in PE vs. ES groups (FDR adjusted p-value (q)<0.05). The transcriptional changes identified by RNA-seq were confirmed by quantitative real-time PCR. To gain insight into the function of the DEGs, the E2-regulated genes were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG). Based on GO and KEGG pathways, the identified DEGs of PE vs. ES stages are involved in extracellular matrix formation, regulation of actin cytoskeleton, oxidative stress, neuroprotection, immune system, oligodendrocyte maturation and myelination, signal transduction pathways, growth factor signaling, retinoid signaling, aging, cellular process, metabolism and transport. The profiles of the gene expression in the hippocampus identified at the PE vs. ES stages were compared with the gene expression profiles in ovariectomized (OVX) rats receiving E2 replacement via RNA-seq and qPCR. The profiles of gene expression between the OVX+E2 and the estrous cycle were different and the possible causes were discussed.


Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Animais , Feminino , Ratos , Análise de Sequência de RNA
8.
Neurochem Res ; 44(5): 1243-1251, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30875016

RESUMO

A majority of excitatory synapses in the brain are localized on the dendritic spines. Alterations of spine density and morphology are associated with many neurological diseases. Understanding the molecular mechanisms underlying spine formation is important for understanding these diseases. Kalirin7 (Kal-7) is localized to the postsynaptic side of excitatory synapses in the neurons. Overexpression of Kal-7 causes an increase in spine density whereas knockdown expression of endogenous Kal-7 results in a decrease in spine density in primary cultured cortical neurons. However, the mechanisms underlying Kal-7-mediated spine formation are not entirely clear. Cyclin-dependent kinase 5 (Cdk5) plays a vital role in the formation of spines and synaptic plasticity. Kal-7 is phosphorylated by CDK5 at Thr1590, the unique Cdk5 phosphorylation site in the Kal-7 protein. This study was to explore the role of CDK5-mediated phosphorylation of Kal-7 in spine formation and the underlying mechanisms. Our results showed expression of Kal-7T/D (mimicked phosphorylation), Kal-7T/A mutants (blocked phosphorylation) or wild-type (Wt) Kal-7 caused in a similar increase in spine density, while spine size of Wt Kal-7-expressing cortical neurons was bigger than that in Kal-7 T\A-expressing neurons, but smaller than that in Kal-7T/D-expressing neurons. The fluorescence intensity of NMDA receptor subunit NR2B (GluN2B) staining was stronger along the MAP2 positive dendrites of Kal-7T/D-expressing neurons than that in Kal-7T/A- or Wt Kal-7-expressing neurons. The fluorescence intensity of AMPA receptor subunit GluR1 (GluA1) staining showed the same trend as GluN2B staining. These findings suggest that Cdk5 affects the function of Kal-7 on spine morphology and function via GluN2B and GluA1 receptors during dendritic spine formation.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Hipocampo/metabolismo , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo
9.
Neural Plast ; 2016: 8056370, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881133

RESUMO

Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.


Assuntos
Encéfalo/fisiopatologia , Espinhas Dendríticas/fisiologia , Transtorno Depressivo/fisiopatologia , Modelos Animais de Doenças , Plasticidade Neuronal , Estresse Psicológico/complicações , Animais , Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Transtorno Depressivo/etiologia , Transtorno Depressivo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Ratos , Restrição Física
10.
BMC Cancer ; 15: 848, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26537356

RESUMO

BACKGROUND: Liquid-state specimen carriers are inadequate for sample transportation in large-scale screening projects in low-resource settings, which necessitates the exploration of novel non-hazardous solid-state alternatives. Studies investigating the feasibility and accuracy of a solid-state human papillomavirus (HPV) sampling medium in combination with different down-stream HPV DNA assays for cervical cancer screening are needed. METHODS: We collected two cervical specimens from 396 women, aged 25-65 years, who were enrolled in a cervical cancer screening trial. One sample was stored using DCM preservative solution and the other was applied to a Whatman Indicating FTA Elute® card (FTA card). All specimens were processed using three HPV testing methods, including Hybrid capture 2 (HC2), careHPV™, and Cobas®4800 tests. All the women underwent a rigorous colposcopic evaluation that included using a microbiopsy protocol. RESULTS: Compared to the liquid-based carrier, the FTA card demonstrated comparable sensitivity for detecting high grade Cervical Intraepithelial Neoplasia (CIN) using HC2 (91.7 %), careHPV™ (83.3 %), and Cobas®4800 (91.7 %) tests. Moreover, the FTA card showed a higher specificity compared to a liquid-based carrier for HC2 (79.5 % vs. 71.6 %, P = 0.015), comparable specificity for careHPV™ (78.1 % vs. 73.0 %, P > 0.05), but lower specificity for the Cobas®4800 test (62.4 % vs. 69.9 %, P = 0.032). Generally, the FTA card-based sampling medium's accuracy was comparable with that of liquid-based medium for the three HPV testing assays. CONCLUSIONS: FTA cards are a promising sample carrier for cervical cancer screening. With further optimization, it can be utilized for HPV testing in areas of varying economic development.


Assuntos
DNA Viral/genética , Detecção Precoce de Câncer/métodos , Papillomaviridae/genética , Infecções por Papillomavirus/diagnóstico , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Adulto , Idoso , Estudos de Viabilidade , Feminino , Genótipo , Humanos , Pessoa de Meia-Idade , Infecções por Papillomavirus/virologia , Projetos Piloto , Reprodutibilidade dos Testes , Neoplasias do Colo do Útero/virologia , Esfregaço Vaginal , Displasia do Colo do Útero/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA