Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Hepatol ; 80(5): 730-743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38199298

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which there is an unmet need to understand the cellular composition of the affected liver and how it underlies disease pathogenesis. We aimed to generate a comprehensive atlas of the PSC liver using multi-omic modalities and protein-based functional validation. METHODS: We employed single-cell and single-nucleus RNA sequencing (47,156 cells and 23,000 nuclei) and spatial transcriptomics (one sample by 10x Visium and five samples with Nanostring GeoMx DSP) to profile the cellular ecosystem in 10 PSC livers. Transcriptomic profiles were compared to 24 neurologically deceased donor livers (107,542 cells) and spatial transcriptomics controls, as well as 18,240 cells and 20,202 nuclei from three PBC livers. Flow cytometry was performed to validate PSC-specific differences in immune cell phenotype and function. RESULTS: PSC explants with parenchymal cirrhosis and prominent periductal fibrosis contained a population of cholangiocyte-like hepatocytes that were surrounded by diverse immune cell populations. PSC-associated biliary, mesenchymal, and endothelial populations expressed chemokine and cytokine transcripts involved in immune cell recruitment. Additionally, expanded CD4+ T cells and recruited myeloid populations in the PSC liver expressed the corresponding receptors to these chemokines and cytokines, suggesting potential recruitment. Tissue-resident macrophages, by contrast, were reduced in number and exhibited a dysfunctional and downregulated inflammatory response to lipopolysaccharide and interferon-γ stimulation. CONCLUSIONS: We present a comprehensive atlas of the PSC liver and demonstrate an exhaustion-like phenotype of myeloid cells and markers of chronic cytokine expression in late-stage PSC lesions. This atlas expands our understanding of the cellular complexity of PSC and has potential to guide the development of novel treatments. IMPACT AND IMPLICATIONS: Primary sclerosing cholangitis (PSC) is a rare liver disease characterized by chronic inflammation and irreparable damage to the bile ducts, which eventually results in liver failure. Due to a limited understanding of the underlying pathogenesis of disease, treatment options are limited. To address this, we sequenced healthy and diseased livers to compare the activity, interactions, and localization of immune and non-immune cells. This revealed that hepatocytes lining PSC scar regions co-express cholangiocyte markers, whereas immune cells infiltrate the scar lesions. Of these cells, macrophages, which typically contribute to tissue repair, were enriched in immunoregulatory genes and demonstrated a lack of responsiveness to stimulation. These cells may be involved in maintaining hepatic inflammation and could be a target for novel therapies.


Assuntos
Colangite Esclerosante , Humanos , Cicatriz/metabolismo , Cicatriz/patologia , Ecossistema , Fígado/patologia , Cirrose Hepática/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Perfilação da Expressão Gênica
2.
J Virol ; 90(12): 5549-5560, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27009955

RESUMO

UNLABELLED: Inflammation may be maladaptive to the control of viral infection when it impairs interferon (IFN) responses, enhancing viral replication and spread. Dysregulated immunity as a result of inappropriate innate inflammatory responses is a hallmark of chronic viral infections such as, hepatitis B virus and hepatitis C virus (HCV). Previous studies from our laboratory have shown that expression of an IFN-stimulated gene (ISG), ubiquitin-like protease (USP)18 is upregulated in chronic HCV infection, leading to impaired hepatocyte responses to IFN-α. We examined the ability of inflammatory stimuli, including tumor necrosis factor alpha (TNF-α), lipopolysaccharide (LPS), interleukin-6 (IL-6) and IL-10 to upregulate hepatocyte USP18 expression and blunt the IFN-α response. Human hepatoma cells and primary murine hepatocytes were treated with TNF-α/LPS/IL-6/IL-10 and USP18, phosphorylated (p)-STAT1 and myxovirus (influenza virus) resistance 1 (Mx1) expression was determined. Treatment of Huh7.5 cells and primary murine hepatocytes with LPS and TNF-α, but not IL-6 or IL-10, led to upregulated USP18 expression and induced an IFN-α refractory state, which was reversed by USP18 knockdown. Liver inflammation was induced in vivo using a murine model of hepatic ischemia/reperfusion injury. Hepatic ischemia/reperfusion injury led to an induction of USP18 expression in liver tissue and promotion of lymphocytic choriomeningitis replication. These data demonstrate that certain inflammatory stimuli (TNF-α and LPS) but not others (IL-6 and IL-10) target USP18 expression and thus inhibit IFN signaling. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with USP18 representing a potential target for intervention in various inflammatory states. IMPORTANCE: Inflammation may prevent the control of viral infection when it impairs the innate immune response, enhancing viral replication and spread. Blunted immunity as a result of inappropriate innate inflammatory responses is a common characteristic of chronic viral infections. Previous studies have shown that expression of certain interferon-stimulated genes is upregulated in chronic HCV infection, leading to impaired hepatocyte responses. In this study, we show that multiple inflammatory stimuli can modulate interferon stimulated gene expression and thus inhibit hepatocyte interferon signaling via USP18 induction. These findings represent a new paradigm for how inflammation alters hepatic innate immune responses, with the induction of USP18 representing a potential target for intervention in various inflammatory states.


Assuntos
Endopeptidases/genética , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interferon-alfa/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/imunologia , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitina Tiolesterase/genética , Animais , Linhagem Celular Tumoral , Endopeptidases/metabolismo , Hepacivirus/fisiologia , Hepatite C Crônica/imunologia , Hepatócitos/virologia , Humanos , Imunidade Inata , Inflamação/virologia , Interferon-alfa/genética , Interferon-alfa/imunologia , Interleucina-10/farmacologia , Interleucina-6/farmacologia , Isquemia/sangue , Fígado/irrigação sanguínea , Fígado/lesões , Fígado/patologia , Camundongos , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo
3.
Nat Mater ; 15(11): 1212-1221, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27525571

RESUMO

The liver and spleen are major biological barriers to translating nanomedicines because they sequester the majority of administered nanomaterials and prevent delivery to diseased tissue. Here we examined the blood clearance mechanism of administered hard nanomaterials in relation to blood flow dynamics, organ microarchitecture and cellular phenotype. We found that nanomaterial velocity reduces 1,000-fold as they enter and traverse the liver, leading to 7.5 times more nanomaterial interaction with hepatic cells relative to peripheral cells. In the liver, Kupffer cells (84.8 ± 6.4%), hepatic B cells (81.5 ± 9.3%) and liver sinusoidal endothelial cells (64.6 ± 13.7%) interacted with administered PEGylated quantum dots, but splenic macrophages took up less material (25.4 ± 10.1%) due to differences in phenotype. The uptake patterns were similar for two other nanomaterial types and five different surface chemistries. Potential new strategies to overcome off-target nanomaterial accumulation may involve manipulating intra-organ flow dynamics and modulating the cellular phenotype to alter hepatic cell interactions.


Assuntos
Fígado/metabolismo , Nanoestruturas , Dureza , Fígado/citologia , Fenótipo , Propriedades de Superfície
4.
J Virol ; 88(11): 6195-204, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648452

RESUMO

UNLABELLED: Coronaviruses express a deubiquitinating protein, the papain-like protease-2 (PLP2), that removes both ubiquitin and the ubiquitin-like interferon (IFN)-stimulated gene 15 (ISG15) protein from target proteins. ISG15 has antiviral activity against a number of viruses; therefore, we examined the effect of ISG15 conjugation (ISGylation) in a model of acute viral hepatitis induced by the murine hepatitis virus strain 3 (MHV-3) coronavirus. Mice deficient in the ISG15 deconjugating enzyme, ubiquitin-specific peptidase-18 (USP18), accumulate high levels of ISG15-conjugated proteins and are hypersensitive to type I IFN. Infecting USP18(-/-) mice with MHV-3 resulted in extended survival (8 ± 1.2 versus 4 days) and in improved liver histology, a decreased inflammatory response, and viral titers 1 to 2 logs lower than in USP18(+/+) mice. The suppression of viral replication was not due to increased IFN since infected USP18(-/-) mice had neither increased hepatic IFN-α, -ß, or -γ mRNA nor circulating protein. Instead, delayed MHV-3 replication coincided with high levels of cellular ISGylation. Decreasing ISGylation by knockdown of the ISG15 E1 enzyme, Ube1L, in primary USP18(+/+) and USP18(-/-) hepatocytes led to increased MHV-3 replication. Both in vitro and in vivo, increasing MHV-3 titers were coincident with increased PLP2 mRNA and decreased ISGylation over the course of infection. The pharmacologic inhibition of the PLP2 enzyme in vitro led to decreased MHV-3 replication. Overall, these results demonstrate the antiviral effect of ISGylation in an in vivo model of coronavirus-induced mouse hepatitis and illustrate that PLP2 manipulates the host innate immune response through the ISG15/USP18 pathway. IMPORTANCE: There have been a number of serious worldwide pandemics due to widespread infections by coronavirus. This virus (in its many forms) is difficult to treat, in part because it is very good at finding "holes" in the way that the host (the infected individual) tries to control and eliminate the virus. In this study, we demonstrate that an important host viral defense-the ISG15 pathway-is only partially effective in controlling severe coronavirus infection. Activation of the pathway is very good at suppressing viral production, but over time the virus overwhelms the host response and the effects of the ISG15 pathway. These data provide insight into host-virus interactions during coronavirus infection and suggest that the ISG15 pathway is a reasonable target for controlling severe coronavirus infection although the best treatment will likely involve multiple pathways and targets.


Assuntos
Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Hepatite Viral Animal/metabolismo , Vírus da Hepatite Murina , Papaína/metabolismo , Ubiquitina Tiolesterase/deficiência , Alanina Transaminase/sangue , Análise de Variância , Animais , Aspartato Aminotransferases/sangue , Western Blotting , Proteases Semelhantes à Papaína de Coronavírus , Primers do DNA/genética , Hepatite Viral Animal/virologia , Hepatócitos , Interferons/sangue , Macrófagos Peritoneais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papaína/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sobrevida , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo
5.
Genomics ; 102(5-6): 491-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24100145

RESUMO

We identified 7 SHP-1 (PTPN6) transcripts using epithelial cancer-derived cell lines. Four were shown to utilize the epithelial promoter 1 to transcribe a full-length, a partial (exon 3) or complete (exons 3 & 4) deletion of the N-SH2 domain, and also a non-coding transcript having a stop codon caused by a frame shift due to intron 2 retention. Three additional transcripts were shown to utilize the hematopoietic promoter 2 to transcribe a full-length, a partial (exon 3) deletion of the N-SH2 domain and a non-coding transcript with intron 2 retention. We show that endogenous proteins corresponding to the open-reading-frame (ORF) transcripts are produced. Using GST-fusion proteins we show that each product of the ORF SHP-1 transcripts has phosphatase activity and isoforms with an N-SH2 deletion have increased phosphatase activity and novel protein-protein interactions. This study is the first to document utilization of promoter 2 by SHP-1 transcripts and a noncoding transcript in human epithelial cells.


Assuntos
Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Processamento Alternativo , Linhagem Celular Tumoral , Éxons , Mutação da Fase de Leitura , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Células Jurkat , Células MCF-7 , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
6.
iScience ; 26(11): 108213, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026201

RESUMO

The large size and vascular accessibility of the laboratory rat (Rattus norvegicus) make it an ideal hepatic animal model for diseases that require surgical manipulation. Often, the disease susceptibility and outcomes of inflammatory pathologies vary significantly between strains. This study uses single-cell transcriptomics to better understand the complex cellular network of the rat liver, as well as to unravel the cellular and molecular sources of inter-strain hepatic variation. We generated single-cell and single-nucleus transcriptomic maps of the livers of healthy Dark Agouti and Lewis rat strains and developed a factor analysis-based bioinformatics analysis pipeline to study data covariates, such as strain and batch. Using this approach, we discovered transcriptomic variation within the hepatocyte and myeloid populations that underlie distinct cell states between rat strains. This finding will help provide a reference for future investigations on strain-dependent outcomes of surgical experiment models.

7.
Transfusion ; 52(8): 1799-805, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22257295

RESUMO

BACKGROUND: Sialylation of the N-linked glycan on asparagine-297 within the Fc region of intravenous gammaglobulins (IVIgs) was shown to be necessary for efficacy of IVIg in the amelioration of experimental inflammatory arthritis. To test the role for Fc sialylation of IVIg in immune modulating therapies beyond the K/BxN arthritis model, we examined the efficacy of sialylated compared to nonsialylated IVIg for the ability to attenuate immune thrombocytopenia (ITP) in a mouse model that approximates the clinical setting of human ITP. STUDY DESIGN AND METHODS: We used a published, passive anti-platelet (PLT) dose-escalation mouse model of ITP that approximates clinical ITP. PLT counts were followed over time before and after IVIg treatment. IVIg from two different manufacturers was used to prepare untreated and neuraminidase-treated IVIg. Sambucus nigra agglutinin (SNA) affinity chromatography was used to obtain sialic acid-enriched and -depleted IVIg. Sialic acid content was determined using Western blot, enzyme-linked immunosorbent assay, and high-performance liquid chromatography. RESULTS: Results were the same using sialylated and desialylated (neuraminidase-treated) IVIg from two different manufacturers. No differences were observed between sialic acid-enriched and -depleted IVIg compared to normal IVIg in their efficacy to alleviate ITP. Using quantitative reverse transcription-polymerase chain reaction, no increase in the spleen FcγRIIB mRNA was detectable, but a pronounced increase of FcγRIIB mRNA in the marrow was seen after IVIg administration. CONCLUSIONS: We conclude that IVIg ameliorates experimental ITP by a mechanism that is independent of sialylation either in the Fc or the Fab region of IVIg.


Assuntos
Imunoglobulinas Intravenosas/farmacologia , Fatores Imunológicos/farmacologia , Ácido N-Acetilneuramínico/metabolismo , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Púrpura Trombocitopênica Idiopática/imunologia , Animais , Asparagina/metabolismo , Modelos Animais de Doenças , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Lectinas de Plantas/farmacologia , Contagem de Plaquetas , Polissacarídeos/metabolismo , Púrpura Trombocitopênica Idiopática/metabolismo , RNA Mensageiro/metabolismo , Receptores de IgG/genética , Proteínas Inativadoras de Ribossomos/farmacologia
8.
Hepatol Commun ; 6(4): 821-840, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34792289

RESUMO

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single-cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation-related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at a single-cell resolution, revealed the presence of rare subtypes of liver mesenchymal cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an independent spatial transcriptomics data set and immunohistochemistry. Conclusion: Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


Assuntos
Fígado , Análise de Célula Única , Núcleo Celular/genética , Humanos , Análise de Sequência de RNA , Transcriptoma/genética
9.
J Virol ; 84(23): 12419-28, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861244

RESUMO

Ubiquitination is a critical regulator of the host immune response to viral infection, and many viruses, including coronaviruses, encode proteins that target the ubiquitination system. To explore the link between coronavirus infection and the ubiquitin system, we asked whether protein degradation by the 26S proteasome plays a role in severe coronavirus infections using a murine model of SARS-like pneumonitis induced by murine hepatitis virus strain 1 (MHV-1). In vitro, the pretreatment of peritoneal macrophages with inhibitors of the proteasome (pyrrolidine dithiocarbamate [PDTC], MG132, and PS-341) markedly inhibited MHV-1 replication at an early step in its replication cycle, as evidenced by inhibition of viral RNA production. Proteasome inhibition also blocked viral cytotoxicity in macrophages, as well as the induction of inflammatory mediators such as IP-10, gamma interferon (IFN-γ), and monocyte chemoattractant protein 1 (MCP-1). In vivo, intranasal inoculation of MHV-1 results in a lethal pneumonitis in A/J mice. Treatment of A/J mice with the proteasome inhibitor PDTC, MG132, or PS-341 led to 40% survival (P < 0.01), with a concomitant improvement of lung histology, reduced pulmonary viral replication, decreased pulmonary STAT phosphorylation, and reduced pulmonary inflammatory cytokine expression. These data demonstrate that inhibition of the cellular proteasome attenuates pneumonitis and cytokine gene expression in vivo by reducing MHV-1 replication and the resulting inflammatory response. The results further suggest that targeting the proteasome may be an effective new treatment for severe coronavirus infections.


Assuntos
Infecções por Coronavirus/imunologia , Regulação da Expressão Gênica/imunologia , Vírus da Hepatite Murina/imunologia , Pneumonia/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Northern Blotting , Western Blotting , Ácidos Borônicos/farmacologia , Bortezomib , Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Primers do DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas Histológicas , Leupeptinas/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Fosforilação , Pneumonia/metabolismo , Pneumonia/virologia , Prolina/análogos & derivados , Prolina/farmacologia , Inibidores de Proteassoma , Pirazinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição STAT/metabolismo , Análise de Sobrevida , Tiocarbamatos/farmacologia , Ubiquitinação
10.
J Virol ; 84(18): 9278-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20631137

RESUMO

We report here investigation into the genetic basis of mouse hepatitis virus strain 1 (MHV-1) pneumovirulence. Sequencing of the 3' one-third of the MHV-1 genome demonstrated that the genetic organization of MHV-1 was similar to that of other strains of MHV. The hemagglutinin esterase (HE) protein was truncated, and reverse transcription-PCR (RT-PCR) studies confirmed previous work that suggested that the MHV-1 HE is a pseudogene. Targeted recombination was used to select chimeric viruses containing either the MHV-1 S gene or genes encoding all of the MHV-1 structural proteins, on an MHV-A59 background. Challenge studies in mice demonstrated that expression of the MHV-1 S gene within the MHV-A59 background (rA59/S(MHV-1)) increased the pneumovirulence of MHV-A59, and mice infected with this recombinant virus developed pulmonary lesions that were similar to those observed with MHV-1, although rA59/S(MHV-1) was significantly less virulent. Chimeras containing all of the MHV-1 structural genes on an MHV-A59 background were able to reproduce the severe acute respiratory syndrome (SARS)-like pathology observed with MHV-1 and reproducibly increased pneumovirulence relative to rA59/S(MHV-1), but were still much less virulent than MHV-1. These data suggest that important determinants of pneumopathogenicity are contained within the 3' one-third of the MHV-1 genome, but additional important virulence factors must be encoded in the genome upstream of the S gene. The severity of the pulmonary lesions observed correlates better with elevated levels of inflammatory cytokines than with viral replication in the lungs, suggesting that pulmonary disease has an important immunological component.


Assuntos
Pulmão/patologia , Pulmão/virologia , Glicoproteínas de Membrana/fisiologia , Vírus da Hepatite Murina/patogenicidade , Proteínas do Envelope Viral/fisiologia , Fatores de Virulência/fisiologia , Animais , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Ordem dos Genes , Genes Virais , Glicoproteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Vírus da Hepatite Murina/genética , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/química , RNA Viral/genética , Recombinação Genética , Análise de Sequência de DNA , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética , Fatores de Virulência/genética
11.
Blood ; 113(20): 4980-91, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19139081

RESUMO

Several human histo-blood groups are glycosphingolipids, including P/P1/P(k). Glycosphingolipids are implicated in HIV-host-cell-fusion and some bind to HIV-gp120 in vitro. Based on our previous studies on Fabry disease, where P(k) accumulates and reduces infection, and a soluble P(k) analog that inhibits infection, we investigated cell surface-expressed P(k) in HIV infection. HIV-1 infection of peripheral blood-derived mononuclear cells (PBMCs) from otherwise healthy persons, with blood group P(1)(k), where P(k) is overexpressed, or blood group p, that completely lacks P(k), were compared with draw date-matched controls. Fluorescence-activated cell sorter analysis and/or thin layer chromatography were used to verify P(k) levels. P(1)(k) PBMCs were highly resistant to R5 and X4 HIV-1 infection. In contrast, p PBMCs showed 10- to 1000-fold increased susceptibility to HIV-1 infection. Surface and total cell expression of P(k), but not CD4 or chemokine coreceptor expression, correlated with infection. P(k) liposome-fused cells and CD4(+) HeLa cells manipulated to express high or low P(k) levels confirmed a protective effect of P(k). We conclude that P(k) expression strongly influences susceptibility to HIV-1 infection, which implicates P(k) as a new endogenous cell-surface factor that may provide protection against HIV-1 infection.


Assuntos
Citoproteção/imunologia , Infecções por HIV/sangue , Infecções por HIV/imunologia , HIV-1 , Triexosilceramidas/fisiologia , Antígenos CD4/metabolismo , Células Cultivadas , Citoproteção/genética , Galactosiltransferases/antagonistas & inibidores , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Infecções por HIV/genética , HIV-1/fisiologia , Células HeLa , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Células Jurkat , RNA Interferente Pequeno/farmacologia , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Transfecção , Triexosilceramidas/metabolismo
12.
Hepatology ; 49(2): 387-97, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19085958

RESUMO

UNLABELLED: Fulminant viral hepatitis (FH) remains an important clinical problem in which the underlying pathogenesis is not well understood. Here, we present insight into the immunological mechanisms involved in FH caused by murine hepatitis virus strain 3 (MHV-3), indicating a critical role for CD4(+)CD25(+) regulatory T cells (Tregs) and production of the novel Treg effector molecule FGL2. Before infection with MHV-3, susceptible BALB/cJ mice had increased numbers of Tregs and expression of fgl2 messenger RNA (mRNA) and FGL2 protein compared with resistant A/J mice. After MHV-3 infection, plasma levels of FGL2 in BALB/cJ mice were significantly increased, correlating with increased percentage of Tregs. Treatment with anti-FGL2 antibody completely inhibited Treg activity and protected susceptible BALB/cJ mice against MHV-3-liver injury and mortality. Adoptive transfer of wild-type Tregs into resistant fgl2(-/-) mice increased their mortality caused by MHV-3 infection, whereas transfer of peritoneal exudate macrophages had no adverse effect. CONCLUSION: This study demonstrates that FGL2 is an important effector cytokine of Tregs that contributes to susceptibility to MHV-3-induced FH. The results further suggest that targeting FGL2 may lead to the development of novel treatment approaches for acute viral hepatitis infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Fibrinogênio/imunologia , Hepatite Viral Animal/imunologia , Linfócitos T Reguladores/imunologia , Animais , Infecções por Coronavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos A/imunologia , Camundongos Endogâmicos BALB C , Vírus da Hepatite Murina , Reação em Cadeia da Polimerase
13.
J Vis Exp ; (165)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226024

RESUMO

The rat orthotopic liver transplantation (OLT) model is a powerful tool to study acute and chronic rejection. However, it is not a complete representation of human liver transplantation due to the absence of arterial reconnection. Described here is a modified transplantation procedure that includes the incorporation of hepatic artery (HA) reconnection, leading to a marked improvement in transplant outcomes. With a mean anhepatic time of 12 min and 14 s, HA reconnection results in improved perfusion of the transplanted liver and an increase in long-term recipient survival from 37.5% to 88.2%. This protocol includes the use of 3D-printed cuffs and holders to connect the portal vein and infrahepatic inferior vena cava. It can be implemented for studying multiple aspects of liver transplantation, from immune response and infection to technical aspects of the procedure. By incorporating a simple and practical method for arterial reconnection using a microvascular technique, this modified rat OLT protocol closely mimics aspects of human liver transplantation and will serve as a valuable and clinically relevant research model.


Assuntos
Rejeição de Enxerto/prevenção & controle , Artéria Hepática/cirurgia , Hepatopatias/cirurgia , Transplante de Fígado/veterinária , Veia Porta/cirurgia , Complicações Pós-Operatórias/prevenção & controle , Animais , Transplante de Fígado/métodos , Masculino , Ratos , Ratos Endogâmicos Lew
14.
ACS Nano ; 14(4): 4698-4715, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32255624

RESUMO

There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animais , Modelos Animais de Doenças , Humanos , Fígado , Marmota , Distribuição Tecidual
15.
Nat Commun ; 9(1): 4383, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348985

RESUMO

The liver is the largest solid organ in the body and is critical for metabolic and immune functions. However, little is known about the cells that make up the human liver and its immune microenvironment. Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human hepatic immune microenvironment.


Assuntos
Fígado/citologia , Fígado/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Monócitos/citologia , Monócitos/metabolismo , Análise de Sequência de RNA
16.
ACS Nano ; 11(3): 2428-2443, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28040885

RESUMO

A significant challenge to delivering therapeutic doses of nanoparticles to targeted disease sites is the fact that most nanoparticles become trapped in the liver. Liver-resident macrophages, or Kupffer cells, are key cells in the hepatic sequestration of nanoparticles. However, the precise role that the macrophage phenotype plays in nanoparticle uptake is unknown. Here, we show that the human macrophage phenotype modulates hard nanoparticle uptake. Using gold nanoparticles, we examined uptake by human monocyte-derived macrophages that had been driven to a "regulatory" M2 phenotype or an "inflammatory" M1 phenotype and found that M2-type macrophages preferentially take up nanoparticles, with a clear hierarchy among the subtypes (M2c > M2 > M2a > M2b > M1). We also found that stimuli such as LPS/IFN-γ rather than with more "regulatory" stimuli such as TGF-ß/IL-10 reduce per cell macrophage nanoparticle uptake by an average of 40%. Primary human Kupffer cells were found to display heterogeneous expression of M1 and M2 markers, and Kupffer cells expressing higher levels of M2 markers (CD163) take up significantly more nanoparticles than Kupffer cells expressing lower levels of surface CD163. Our results demonstrate that hepatic inflammatory microenvironments should be considered when studying liver sequestration of nanoparticles, and that modifying the hepatic microenvironment might offer a tool for enhancing or decreasing this sequestration. Our findings also suggest that models examining the nanoparticle/macrophage interaction should include studies with primary tissue macrophages.


Assuntos
Ouro/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Nanopartículas Metálicas/química , Ouro/sangue , Ouro/química , Humanos , Fígado/citologia , Macrófagos/química , Monócitos/química , Monócitos/metabolismo , Fenótipo
17.
AIDS ; 20(3): 333-43, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16439866

RESUMO

OBJECTIVE: To determine the effect of a gp120 binding, non-cytotoxic soluble analogue of the glycosphingolipid (GSL), globotriaosyl ceramide (Gb3) on HIV infection in vitro. DESIGN: HIV-1(IIIB) (X4 virus) infection in Jurkat and phytohaemagglutinin (PHA)/interleukin-2 (IL2) activated, peripheral blood mononuclear cells (PBMC), and HIV-1(Ba-L) (R5 virus) infection of PHA activated PBMC in vitro were assessed. We monitored cell surface markers, cell viability, and viral/host cell morphology to eliminate pleiotropic effects. Viral-host cell fusion was measured to further address any inhibitory mechanism. METHODS: HIV infection was monitored by p24(gag) ELISA. CD4, CCR5, CXCR4 and apoptosis were determined by fluorescent antibody cell sorting. A model fusion system comprising a cell line transfected with either CD4 and CXCR4 or CCR5, cocultured with a cell line expressing gp120 from either X4-, R5-tropic HIV-1 or HIV-2 virions, was used. PHA/IL2 activated PBMC GSL synthesis was monitored by metabolic radiolabelling. RESULTS: AdamantylGb3 blocked X4 and R5 virus infection with a 50% inhibitory concentration of approximately 150 microM. A reverse transcriptase and a protease-resistant X4 HIV-1 strain retained adamantylGb3 sensitivity. AdamantylGb3 had minimal effect on cell viability. Treated Jurkat cells showed a small increase in CCR5/CXCR4 expression and a slight, transient CD4 down-regulation, which was probably not related to the mechanism of inhibition. Electron microscopy showed normal viral and host cell morphology following adamantylGb3 treatment, and viral entry was blocked. AdamantylGb3 was able to prevent virus-host cell fusion irrespective of HIV strain or chemokine receptor preference. CONCLUSIONS: These results suggest that adamantylGb3 may provide a new basis for blocking HIV infections, irrespective of HIV envelope/chemokine co-receptor preference or resistance to other therapeutics.


Assuntos
Antivirais/uso terapêutico , Glicolipídeos/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1 , Triexosilceramidas/uso terapêutico , Adamantano/análogos & derivados , Adamantano/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Células Jurkat , Leucócitos Mononucleares/virologia , Microscopia Eletrônica
18.
Front Biosci ; 11: 2940-8, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720366

RESUMO

A combination gene therapy strategy using an ASPsi-gag antisense RNA (targeted against the packaging signal and the gag-coding region) and a multimeric hammerhead ribozyme Rz1-9 (targeted against nine sites within the env-coding region) or Rz1-14 (targeted against 14 sites within the 5' leader and the pro-, pol-, vif- and env-coding regions) was assessed for inhibiting HIV-1 replication. A murine stem cell virus (MSCV)-based MGIN vector was used to express Rz1-9, Rz1-14, ASPsi-gag, Rz1-9ASPsi-gag, or Rz1-14ASPsi-gag RNA in a CD4+ T lymphoid cell line. Stable transductants were shown to express similar levels of interfering RNA. HIV-1 replication was inhibited in cells expressing Rz1-9 and Rz1-14. Little inhibition of HIV-1 replication was observed in cells expressing ASPsi-gag RNA. Thus, the multimeric hammerhead ribozymes inhibit HIV-1 replication better than the antisense RNA. Inhibition of HIV-1 replication in cells expressing Rz1-9ASPsi-gag or Rz1-14ASPsi-gag RNA was worse than that obtained with the multimeric ribozymes alone. This result suggests that co-expression of antisense RNA decreases the anti-HIV potential of ribozymes. The multimeric ribozymes and the antisense RNA were designed to target different sites within the HIV-1 RNA. They are not expected to interact with each other. Neither are they expected to compete with each other for binding to the HIV-1 RNA. Instead, the antisense RNA binding to its (1553 nt-long) target site may have resulted in a decreased ribozyme turn over. Furthermore, since the antisense RNA/HIV-1 RNA hybrids are degraded by the cells, the co-expressed antisense RNA may have led to ribozyme degradation.


Assuntos
Terapia Genética , HIV-1/genética , HIV-1/fisiologia , RNA Antissenso/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , Linfócitos T CD4-Positivos/virologia , Vetores Genéticos , Infecções por HIV/terapia , Vírus da Leucemia Murina de Moloney/genética , RNA Antissenso/genética , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução Genética , Replicação Viral
19.
Exp Hematol ; 31(2): 131-42, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12591278

RESUMO

OBJECTIVE: SHP-1 protein tyrosine phosphatase has been implicated in suppressing B-lymphocyte and myeloid cell malignancies; however, there are little data on this role of SHP-1 in T-lymphocyte malignancies. We examined malignant human T cells to identify any abnormalities of SHP-1 that would support a role for this molecule in suppressing T lymphomagenesis. MATERIALS AND METHODS: Human T-lymphocyte cell lines and primary blood cells were used to examine the expression of SHP-1 mRNA and protein. Reverse transcriptase polymerase chain reaction was used to amplify particular portions of the SHP-1 mRNA for cloning and sequencing. Gene transfer was used to examine the effects of SHP-1 on cell growth and morphology. Glutathione S-transferase (GST) fusion proteins were generated and used to determine SHP-1-associated proteins. RESULTS: Leukemia- and lymphoma-derived cell lines were identified that did not express SHP-1 protein. Examination of the mRNA from these and other T-cell lines, and from normal peripheral blood mononuclear cells (PBMCs), revealed three distinct transcripts by restriction enzymes, reverse transcriptase polymerase chain reaction, and Southern blot analysis. In addition to the expected wild-type transcript, two novel transcripts were identified. One was a deletion transcript found only in Jurkat leukemia-derived cells, predicted to encode for a 7-kDa protein containing most of the amino-terminal SH2 domain. The second contained an 88-nucleotide insert that is the unspliced second intron resulting in a frame shift and the formation of a noncoding transcript. This mRNA was found in all cells examined but was the only transcript detected in the cell lines lacking SHP-1 protein. Expressing wild-type SHP-1 in these cell lines resulted in a change in the morphology of the cells with a concomitant decrease in their growth. GST fusion constructs showed the 7-kDa variant able to associate with an identical array of proteins as wild-type SHP-1, suggesting that it could compete with the wild-type SHP-1 for substrates. This protein was detectable in the cell line expressing its corresponding mRNA and was able to induce significant changes in cell morphology when transfected into a cell line expressing wild-type SHP-1; however, it did not induce any changes in cell growth. CONCLUSIONS: These data are the first to show the existence of multiple transcripts of SHP-1 in human transformed T lymphocytes and normal PBMCs and supports previous work showing that alternate forms of SHP-1 mRNA are a common finding in other cells. We also show the lack of splicing out of an intron as a novel mechanism of regulation of SHP-1 protein expression in both normal and transformed T cells. Moreover, we provide the first evidence showing a protein product detectable in cells that is translated from an alternatively spliced form of SHP-1 mRNA, a variant truncated SHP-1 protein having potential biologic relevance. This report provides evidence supporting the concept that SHP-1 can negatively regulate growth of malignant human T cells and that lack of SHP-1 protein or function may be associated with lymphomagenesis.


Assuntos
Processamento Alternativo/fisiologia , Linfoma/enzimologia , Proteínas Tirosina Fosfatases/genética , Linfócitos T/enzimologia , Processamento Alternativo/genética , Sequência de Bases , Divisão Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia/enzimologia , Leucemia/etiologia , Ativação Linfocitária/efeitos dos fármacos , Linfoma/etiologia , Dados de Sequência Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Proteínas Tirosina Fosfatases/farmacologia , Proteínas Tirosina Fosfatases/fisiologia , RNA Mensageiro/genética , Análise de Sequência de RNA , Linfócitos T/patologia , Transfecção , Células Tumorais Cultivadas
20.
AIDS ; 16(3): 309-19, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11834941

RESUMO

OBJECTIVE: A lack of productive HIV-1 infection of Kit225 compared to Jurkat T cells, despite similar levels of CD4 and HIV-1 chemokine co-receptors, was found to correlate with the expression of vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide receptor-1 (VPAC1). We therefore examined a role for this seven-transmembrane G protein-coupled neuroendocrine receptor in modulating HIV-1 infection. METHODS: Reverse transcription-PCR was used to show the level of VPAC1 expression in different T-cell lines. A signal-blocking antibody to VPAC1 was used to examine its inhibiting effect on HIV-1 infection. Transfection of VPAC1 cDNA in both sense and anti-sense orientation was used to assess the role of VPAC1 in HIV-1 infection. HIV-1 infection was monitored by gag p24 ELISA using HIV-1IIIB or by luciferase activity using pseudo envelope-typed HXB2-NL4-3-luciferase. Analysis of HIV-1 gag DNA and 2-LTR circles was utilized to examine a possible mechanism for the effect of VPAC1. RESULTS: Using VPAC1 signal blocking antibody, we showed that up to 80% of productive infection with HIV-1IIIB was inhibited. We also demonstrated that HIV-1 gp120 has sequence similarity to the natural ligand for VPAC1 and postulate that it can activate this receptor directly. Transfection of VPAC1 cDNA in the anti-sense orientation resulted in a significant loss, up to 50% of productive infection. In contrast, transfection of cells with VPAC1 in the sense orientation increased the productive infection by more than 15-fold and caused a profound increase in syncytium formation. Furthermore, stimulation of VPAC1 on primary cells facilitated in vitro infection with HIV-1 HXB2-NL4-3. Analysis of HIV-1 gag DNA indicated that VPAC1 does not affect viral entry; however, cells that show negligible expression of VPAC1 may not be productively infected as indicated by a lack of 2-LTR circle formation. CONCLUSION: We have discovered a cellular receptor, VPAC1, that is a novel and potent facilitator of HIV-1 infection and thus, is a potentially important new target for therapeutic intervention.


Assuntos
Infecções por HIV/etiologia , HIV-1/patogenicidade , Receptores de Peptídeo Intestinal Vasoativo/fisiologia , Linfócitos T/fisiologia , Linfócitos T/virologia , Sequência de Bases , Linhagem Celular , DNA Antissenso/genética , DNA Antissenso/farmacologia , DNA Complementar/genética , Expressão Gênica , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Repetição Terminal Longa de HIV , Humanos , Células Jurkat , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores , Receptores de Peptídeo Intestinal Vasoativo/genética , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA