Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Biol ; 22(7): e3002728, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39028754

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is the progressive form of liver steatosis, the most common liver disease, and substantially increases the mortality rate. However, limited therapies are currently available to prevent MASH development. Identifying potential pharmacological treatments for the condition has been hampered by its heterogeneous and complex nature. Here, we identified a hepatic nonneuronal cholinergic signaling pathway required for metabolic adaptation to caloric overload. We found that cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) is highly expressed in hepatocytes of mice and humans. Further, CHRNA2 is activated by a subpopulation of local acetylcholine-producing macrophages during MASH development. The activation of CHRNA2 coordinates defensive programs against a broad spectrum of MASH-related pathogenesis, including steatosis, inflammation, and fibrosis. Hepatocyte-specific loss of CHRNA2 signaling accelerates the disease onset in different MASH mouse models. Activation of this pathway via pharmacological inhibition of acetylcholine degradation protects against MASH development. Our study uncovers a hepatic nicotinic cholinergic receptor pathway that constitutes a cell-autonomous self-defense route against prolonged metabolic stress and holds therapeutic potential for combatting human MASH.


Assuntos
Fígado Gorduroso , Hepatócitos , Fígado , Receptores Nicotínicos , Transdução de Sinais , Animais , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/metabolismo , Acetilcolina/metabolismo , Camundongos Knockout , Modelos Animais de Doenças
2.
EMBO J ; 40(24): e106061, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34459015

RESUMO

Non-neuronal cholinergic signaling, mediated by acetylcholine, plays important roles in physiological processes including inflammation and immunity. Our group first discovered evidence of non-neuronal cholinergic circuitry in adipose tissue, whereby immune cells secrete acetylcholine to activate beige adipocytes during adaptive thermogenesis. Here, we reveal that macrophages are the cellular protagonists responsible for secreting acetylcholine to regulate thermogenic activation in subcutaneous fat, and we term these cells cholinergic adipose macrophages (ChAMs). An adaptive increase in ChAM abundance is evident following acute cold exposure, and macrophage-specific deletion of choline acetyltransferase (ChAT), the enzyme for acetylcholine biosynthesis, impairs the cold-induced thermogenic capacity of mice. Further, using pharmacological and genetic approaches, we show that ChAMs are regulated via adrenergic signaling, specifically through the ß2 adrenergic receptor. These findings demonstrate that macrophages are an essential adipose tissue source of acetylcholine for the regulation of adaptive thermogenesis, and may be useful for therapeutic targeting in metabolic diseases.


Assuntos
Acetilcolina/metabolismo , Colina O-Acetiltransferase/genética , Macrófagos/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Gordura Subcutânea/citologia , Animais , Células Cultivadas , Temperatura Baixa , Deleção de Genes , Técnicas de Inativação de Genes , Camundongos , Cultura Primária de Células , Gordura Subcutânea/metabolismo , Termogênese
3.
Trends Immunol ; 43(9): 718-727, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931611

RESUMO

Research focusing on adipose immunometabolism has been expanded from inflammation in white fat during obesity development to immune cell function regulating thermogenic fat, energy expenditure, and systemic metabolism. This opinion discusses our current understanding of how resident immune cells within the thermogenic fat niche may regulate whole-body energy homeostasis. Furthermore, various types of immune cells can synthesize acetylcholine (ACh) and regulate important physiological functions. We highlight a unique subset of cholinergic macrophages within subcutaneous adipose tissue, termed cholinergic adipose macrophages (ChAMs); these macrophages interact with beige adipocytes through cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) signaling to induce adaptive thermogenesis. We posit that these newly identified thermoregulatory macrophages may broaden our view of immune system functions for maintaining metabolic homeostasis and potentially treating obesity and metabolic disorders.


Assuntos
Adipócitos Bege , Termogênese , Tecido Adiposo , Colinérgicos , Humanos , Obesidade
4.
J Transl Med ; 22(1): 259, 2024 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461346

RESUMO

BACKGROUND: Amino acids (AAs) are one of the primary metabolic substrates for cardiac work. The correlation between AAs and both atrial fibrillation (AF) and aging has been documented. However, the relationship between AAs and age-related AF remains unclear. METHODS: Initially, the plasma AA levels of persistent AF patients and control subjects were assessed, and the correlations between AA levels, age, and other clinical indicators were explored. Subsequently, the age-related AF mouse model was constructed and the untargeted myocardial metabolomics was conducted to detect the level of AAs and related metabolites. Additionally, the gut microbiota composition associated with age-related AF was detected by a 16S rDNA amplicon sequencing analysis on mouse fecal samples. RESULTS: Higher circulation levels of lysine (Student's t-test, P = 0.001), tyrosine (P = 0.002), glutamic acid (P = 0.008), methionine (P = 0.008), and isoleucine (P = 0.014), while a lower level of glycine (P = 0.003) were observed in persistent AF patients. The feature AAs identified by machine learning algorithms were glutamic acid and methionine. The association between AAs and age differs between AF and control subjects. Distinct patterns of AA metabolic profiles were observed in the myocardial metabolites of aged AF mice. Aged AF mice had lower levels of Betaine, L-histidine, L-alanine, L-arginine, L-Pyroglutamic acid, and L-Citrulline compared with adult AF mice. Aged AF mice also presented a different gut microbiota pattern, and its functional prediction analysis showed AA metabolism alteration. CONCLUSION: This study provided a comprehensive network of AA disturbances in age-related AF from multiple dimensions, including plasma, myocardium, and gut microbiota. Disturbances of AAs may serve as AF biomarkers, and restoring their homeostasis may have potential benefits for the management of age-related AF.


Assuntos
Aminoácidos , Fibrilação Atrial , Adulto , Humanos , Animais , Camundongos , Idoso , Aminoácidos/metabolismo , Fibrilação Atrial/metabolismo , Metabolômica/métodos , Metionina , Glutamatos
5.
Anal Bioanal Chem ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305860

RESUMO

Gangliosides play an imperative role in cell signaling, neuronal recovery, apoptosis, and other physiological processes. For example, GM3 can regulate hypothalamic leptin resistance and control energy homeostasis, GD3 can mediate cell proliferation and differentiation and induce apoptosis, and GQ1b can stimulate neurogenesis. Therefore, the present study sought to establish and optimize the targeted analysis method for ganglioside subclasses and their molecular species using hydrophilic interaction liquid chromatography-triple quadrupole-MS/MS (HILIC-QQQ-MS/MS). Additionally, the fragmentation pattern of different ganglioside subclasses and their retention time patterns were analyzed, providing more accurate qualitative results. The limit of quantitation (LOQ) was as low as 10-4 ng. Moreover, the molecular species of gangliosides in the liver, cortex, and hypothalamus of C57BL/6 mice were analyzed using the established method. A total of 23 ganglioside subclasses with 164 molecular species, including 40 O-acetylated ganglioside molecular species and 28 NeuGc ganglioside molecular species, were identified using the semi-quantitative analysis method of an external standard curve corrected by an internal standard. In addition to NeuGc gangliosides, the contents of ganglioside subclasses were more abundant in the mouse brain than those in the mouse liver; especially, the contents of unsaturated gangliosides in the hypothalamus were much higher than those in the liver. Among them, O-acetylated gangliosides were detected only in the cortex and hypothalamus at a concentration of up to 100 µg/mg protein (40 molecular species). Overall, the proposed method expanded the detectable number of ganglioside subclasses and molecular species in biological samples and provided more opportunities for further study of the biological functions of gangliosides.

6.
Scand J Med Sci Sports ; 34(2): e14582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349064

RESUMO

BACKGROUND: Due to inconclusive evidence from observational studies regarding the impact of physical activity (PA) and sedentary behavior on frailty and falling risk, we conducted a two-sample Mendelian randomization analysis to investigate the causal associations between PA, sedentary behavior, and frailty and falls. METHODS: We extracted summary data from genome-wide association studies conducted among individuals of European ancestry, encompassing PA (n = 90 667-608 595), sedentary behavior (n = 372 609-526 725), frailty index (n = 175 226), and falling risk (n = 451 179). Single nucleotide polymorphisms associated with accelerometer assessed fraction >425 milligravities, self-reported vigorous activity, moderate to vigorous physical acticity (MVPA), leisure screen time (LST), and sedentary behavior at work were taken as instrumental variables. The causal effects were primarily estimated using inverse variance weighted methods, complemented by several sensitivity and validation analyses. RESULTS: Genetically predicted higher levels of PA were significantly associated with a reduction in the frailty index (accelerometer assessed fraction >425 milligravities: ß = -0.25, 95% CI = -0.36 to -0.14, p = 1.27 × 10-5 ; self-reported vigorous activity: ß = -0.13, 95% CI = -0.20 to -0.05, p = 7.9 × 10-4 ; MVPA: ß = -0.28, 95% CI = -0.40 to -0.16, p = 9.9 × 10-6 ). Besides, LST was significantly associated with higher frailty index (ß = 0.18, 95% CI = 0.14-0.22, p = 5.2 × 10-20 ) and higher odds of falling (OR = 1.13, CI = 1.07-1.19, p = 6.9 × 10-6 ). These findings remained consistent throughout sensitivity and validation analyses. CONCLUSIONS: Our study offers evidence supporting a causal relationship between PA and a reduced risk of frailty. Furthermore, it underscores the association between prolonged LST and an elevated risk of frailty and falls. Therefore, promoting PA and reducing sedentary behavior may be an effective strategy in primary frailty and falls prevention.


Assuntos
Fragilidade , Humanos , Fragilidade/genética , Fragilidade/prevenção & controle , Comportamento Sedentário , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Acidentes por Quedas , Exercício Físico
8.
FASEB J ; 34(11): 14863-14877, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918517

RESUMO

Appropriate control of hepatic gluconeogenesis is essential for the organismal survival upon prolonged fasting and maintaining systemic homeostasis under metabolic stress. Here, we show protein arginine methyltransferase 1 (PRMT1), a key enzyme that catalyzes the protein arginine methylation process, particularly the isoform encoded by Prmt1 variant 2 (PRMT1V2), is critical in regulating gluconeogenesis in the liver. Liver-specific deletion of Prmt1 reduced gluconeogenic capacity in cultured hepatocytes and in the liver. Prmt1v2 was expressed at a higher level compared to Prmt1v1 in hepatic tissue and cells. Gain-of-function of PRMT1V2 clearly activated the gluconeogenic program in hepatocytes via interactions with PGC1α, a key transcriptional coactivator regulating gluconeogenesis, enhancing its activity via arginine methylation, while no effects of PRMT1V1 were observed. Similar stimulatory effects of PRMT1V2 in controlling gluconeogenesis were observed in human HepG2 cells. PRMT1, specifically PRMT1V2, was stabilized in fasted liver and hepatocytes treated with glucagon, in a PGC1α-dependent manner. PRMT1, particularly Prmt1v2, was significantly induced in the liver of streptozocin-induced type 1 diabetes and high fat diet-induced type 2 diabetes mouse models and liver-specific Prmt1 deficiency drastically ameliorated diabetic hyperglycemia. These findings reveal that PRMT1 modulates gluconeogenesis and mediates glucose homeostasis under physiological and pathological conditions, suggesting that deeper understanding how PRMT1 contributes to the coordinated efforts in glycemic control may ultimately present novel therapeutic strategies that counteracts hyperglycemia in disease settings.


Assuntos
Gluconeogênese , Hepatócitos/metabolismo , Hiperglicemia/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Células Cultivadas , Mutação com Ganho de Função , Glucagon/metabolismo , Glucose/metabolismo , Células Hep G2 , Humanos , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferases/genética
9.
BMC Cardiovasc Disord ; 20(1): 50, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013885

RESUMO

BACKGROUND: Previous studies demonstrated impaired lipid metabolism and augmented aerobic glycolysis in AF. The authors aimed to investigate whether the use of metformin, an AMPK activator, could reverse this metabolic remodeling in chronic AF and to explore the underlying mechanisms. METHODS: We conducted chronic AF animal models with 18 beagle dogs and divided them into SR (pacemaker implanted without pacing), AF (pacemaker implanted with sustained pacing at a frequency of 400 beats/min for 6 weeks), and metformin+AF group (daily oral administration of metformin was initiated 1 week before surgery and continued throughout the study period). After electrophysiological measurements, the left atrial appendage tissue samples were taken from the beating heart for further analysis. Protein expression, histological analysis, and biochemical measurements were conducted. RESULTS: The AF groups showed decreased expression of FAT/CD36, CPT-1, VLCAD, increased concentration of free fatty acid and triglyceride, and increased lipid deposition. The activation of AMPK/PGC-1α/PPARα pathway was decreased. The key factors of the Warburg effect, including HIF-1α, GLUT-1, PDK1, HK, and LDH, increased in AF group compared to SR group. The expression of PDH decreased significantly, accompanied by increased atrial lactate production. The extent of fibrosis increased significantly in the left atrial appendage of AF group. dERP, ∑WOV, and AF inducibility increased while ERP decreased in AF group compared to SR group. The use of metformin attenuated all these changes effectively. CONCLUSIONS: Metformin improves lipid metabolism and reverses the Warburg effect in chronic AF via AMPK activation. It attenuates atrial electrical and structural remodeling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apêndice Atrial/efeitos dos fármacos , Fibrilação Atrial/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metformina/farmacologia , Animais , Apêndice Atrial/enzimologia , Apêndice Atrial/fisiopatologia , Fibrilação Atrial/enzimologia , Fibrilação Atrial/fisiopatologia , Função do Átrio Esquerdo/efeitos dos fármacos , Remodelamento Atrial/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , Cães , Ativação Enzimática , Frequência Cardíaca/efeitos dos fármacos , Masculino
10.
Lipids Health Dis ; 18(1): 109, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077199

RESUMO

BACKGROUND: Atrial lipid metabolic remodeling is critical for the process of atrial fibrillation (AF). Abnormal Fatty acid (FA) metabolism in cardiomyocytes is involved in the pathogenesis of AF. MET (Metformin), an AMPK (AMP-activated protein kinase) activator, has been found to be associated with a decreased risk of AF in patients with type 2 diabetes. However, the specific mechanism remains unknown. METHODS: Fifteen mongrel dogs were divided into three groups: SR, ARP (pacing with 800 beats/min for 6 h), ARP plus MET (treated with MET (100 mg/kg/day) for two weeks before pacing). We assessed metabolic factors, speed limiting enzymes circulating biochemical metabolites (substrates and products), atrial electrophysiology and accumulation of lipid droplets. RESULTS: The expression of AMPK increased in the ARP group and significantly increased in the MET+ARP group comparing to the SR group. In the ARP group, the expressions of PPARα、PGC-1α and VLCAD were down-regulated, while the concentration of free fatty acid and triglyceride and the lipid deposition in LAA (left atrial appendage) increased. Moreover, AERP and AERPd have also been found abnormally in this process. Pretreatment with MET before receiving ARP reversed the alterations aforementioned. CONCLUSIONS: The FA metabolism in LAA is altered in the ARP group, mainly characterized by the abnormal expression of the rate-limiting enzyme. Metformin reduces lipid accumulation and promotes ß-oxidation of FA in AF models partially through AMPK/PPAR-α/VLCAD pathway. Our study indicates that MET may inhibit the FA lipid metabolic remodeling in AF.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Fibrilação Atrial/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metformina/farmacologia , PPAR alfa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fibrilação Atrial/fisiopatologia , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Cães , Ácidos Graxos/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
11.
J Mol Cell Cardiol ; 123: 198-208, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30267749

RESUMO

Atrial fibrillation (AF) is the most common sustained arrhythmia, but its mechanisms are poorly understood. Recently, accumulating evidence indicates a link between immune response and AF, but the precise mechanism remains unclear. It should be noticed that the relationship between immune response and AF is complex. Whether immune response is a cause or a result of AF is unclear. As the functional unit of the immune system, immune cells may play a vital role in the immunological pathogenesis of AF. In this review, we briefly highlight the evidence on relationships between immune cells and AF, and discuss their potential roles in AF pathogenesis. We hope this review could provide new orientation and enlightenment for further research on AF mechanism.


Assuntos
Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Animais , Fibrilação Atrial/fisiopatologia , Biomarcadores , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
12.
BMC Cardiovasc Disord ; 18(1): 165, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103676

RESUMO

BACKGROUND: There is a little evidence for the effects of catheter ablation (CA) on hard endpoints in patients with atrial fibrillation (AF) and heart failure (HF). METHODS: PubMed, Embase and Cochrane Library were searched for randomized controlled trials (RCTs) enrolling patients with AF and HF who were assigned to CA, rate control or medical rhythm control groups. This meta-analysis was performed by using random-effect models. RESULTS: Seven RCTs enrolling 856 participants were included in this meta-analysis. CA reduced the risks of all-cause mortality (risk ratio [RR] 0.52, 95% CI 0.35 to 0.76), HF readmission (RR 0.58, 95% CI 0.46 to 0.66) and the composite of all-cause mortality and HF readmission (RR 0.55, 95% CI 0.47 to 0.66) when compared with control. But there was no significant difference in cerebrovascular accident (RR 0.56, 95% CI 0.23 to 1.36) between two groups. Compared with control, CA was associated with improvement in left ventricular ejection fraction (mean difference [MD] 7.57, 95% CI 3.72 to 11.41), left ventricular end systolic volume (MD -14.51, 95% CI -26.84 to - 2.07), and left ventricular end diastolic volume (MD -3.78, 95% CI -18.51 to 10.96). Patients undergoing CA exhibited increased peak oxygen consumption (MD 3.16, 95% CI 1.09 to 5.23), longer 6-min walk test distance (MD 26.67, 95% CI 12.07 to 41.27), and reduced Minnesota Living with Heart Failure Questionnaire scores (MD -9.49, 95% CI -14.64 to - 4.34) than those in control group. Compared with control, CA was associated with improved New York Heart Association class (MD -0.74, 95% CI -0.83 to - 0.64) and lower B-type natriuretic peptide levels (MD -105.96, 95% CI -230.56 to 19.64). CONCLUSIONS: CA was associated with improved survival, morphologic changes, functional capacity and quality of life relative to control. CA should be considered in patients with AF and HF.


Assuntos
Fibrilação Atrial/cirurgia , Ablação por Cateter , Insuficiência Cardíaca/complicações , Fibrilação Atrial/complicações , Fibrilação Atrial/mortalidade , Fibrilação Atrial/fisiopatologia , Ablação por Cateter/efeitos adversos , Ablação por Cateter/mortalidade , Feminino , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Fatores de Risco , Resultado do Tratamento
13.
Lipids Health Dis ; 15: 43, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932585

RESUMO

Dyslipidemia has been proven to play an important role in the occurrence and development of the ischemic stroke and lipid-lowering therapy could significantly decrease the risk of the ischemic stroke. However, the association between lipid levels, lipid-lowering therapy and the risk of intracerebral hemorrhage (ICH) is not clear. Studies have shown that low serum levels of total cholesterol might be associated with increasing risk of ICH, whereas the SPARCL study, a large prospective, randomized, placebo-controlled trial, demonstrated an increased risk of hemorrhagic stroke during high-dose statin therapy among the patients with previous stroke. The relationship between lipid-lowering therapy and ICH has become a hot topic in the recent years. We searched PubMed for articles published in English to review the existing evidence on the association of lipid levels, statin therapy and risk of ICH as well as the underlying mechanisms in order to provide practical recommendations for clinical decision-making and a foundation for further researches.


Assuntos
Hemorragia Cerebral/epidemiologia , Hemorragia Cerebral/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipolipemiantes/uso terapêutico , Animais , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Hipolipemiantes/efeitos adversos , Masculino , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle
14.
Heliyon ; 10(5): e27083, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439838

RESUMO

Background: Observational studies have linked exposure to fine (PM2.5) and coarse (PM10) particulate matter air pollution with adverse COVID-19 outcomes, including higher incidence and mortality. However, some studies questioned the effect of air pollution on COVID-19 susceptibility, raising questions about the causal nature of these associations. To address this, a less biased method like Mendelian randomization (MR) is utilized, which employs genetic variants as instrumental variables to infer causal relationships in observational data. Method: We performed two-sample MR analysis using public genome-wide association studies data. Instrumental variables correlated with PM2.5 concentration, PM2.5 absorbance, PM2.5-10 concentration and PM10 concentration were identified. The inverse variance weighted (IVW), robust adjusted profile score (RAPS) and generalized summary data-based Mendelian randomization (GSMR) methods were used for analysis. Results: IVW MR analysis showed PM2.5 concentration [odd ratio (OR) = 3.29, 95% confidence interval (CI) 1.48-7.35, P-value = 0.0036], PM2.5 absorbance (OR = 5.62, 95%CI 1.98-15.94, P-value = 0.0012), and PM10 concentration (OR = 3.74, 95%CI 1.52-9.20, P-value = 0.0041) increased the risk of COVID-19 severity after Bonferroni correction. Further validation confirmed PM2.5 absorbance was associated with heightened COVID-19 severity (OR = 6.05, 95%CI 1.99-18.38, P-value = 0.0015 for RAPS method; OR = 4.91, 95%CI 1.65-14.59, P-value = 0.0042 for GSMR method) and hospitalization (OR = 3.15, 95%CI 1.54-6.47, P-value = 0.0018 for RAPS method). No causal links were observed between particulate matter exposure and COVID-19 susceptibility. Conclusions: Our study established a causal relationship between smaller particle pollution, specifically PM2.5, and increased risk of COVID-19 severity and hospitalization. These findings highlight the importance of improving air quality to mitigate respiratory disease progression.

15.
Front Cardiovasc Med ; 10: 1071198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910533

RESUMO

Background: Transient receptor potential vanilloid (TRPV) is one of the transient receptor potential protein groups; cardiovascular system disease is a crucial cause of mortality among people globally. Objective: This article is intended to accomplish a bibliometric analysis of the trends and public interest since TRPV was reported for the first time. Methods: The article summarized the Web of Science (WOS) Core Collection on the relationship between TRPV and cardiovascular system disease each year from 2000 to 2021. Data extraction and visualization were completed by R package bibliometrix. Keyword citation burst and co-citation networks were generated and produced by CiteSpace. The map evaluating the distribution of country and region was painted in GunnMap 2 (lert.co.nz). The ranking was performed using the Standard Competition Ranking method. Co-authorship and co-occurrence were analyzed with VOSviewer. Results: After removing duplicated data, books, conference proceedings, and articles of uncertain age, 493 were included, and 17 were excluded. The pattern of publication years showed that the number of publications increased rapidly from 2008 to 2021 with no peak in the number of publications until 2021. The geographical distribution pattern revealed a considerable gap in the number of publications between the United States, China, and other countries, with East Asian institutions leading the world in this area. The pattern of co-authorship showed that 77 institutions were divided into 19 clusters, each covering one country or region.These results suggest that intercontinental cooperation among institutions should be strengthened. The core authors section displayed the change in the most published authors. Keyword analysis listed six burst keywords. Co-citation analysis of references from 2011 to 2021 showed the number and centrality of citations to leading articles. Conclusion: Our findings reveal trends and public interest in transient receptor potential vanilloid for cardiovascular disease. These findings suggest that the field has experienced significant growth since 2008, with the United States and China in dominant positions. Our findings also suggest that intercontinental cooperation should be strengthened, and that future research hotspots may focus on pharmacological mechanisms and in-depth exploration of drug clinical trials and new clinical disease application areas such as hypertension, diabetes, and cardiac arrhythmias, which could serve as a foundation for further research.

16.
Food Funct ; 14(23): 10362-10374, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37929718

RESUMO

The present study analyzed the amelioration effect and mechanism of two kinds of astaxanthin (AST), including free-AST (F-AST) and docosahexaenoic acid-acylated AST monoester (AST-DHA), on ganglioside (GLS) metabolism in the cortex of APP/PS1 mice using the LC-MS strategy in combination with molecular biology. Water maze and immunohistochemical experiments demonstrated that AST significantly improved the cognitive level of APP/PS1 mice and reduced Aß deposition in the cortex. After the dietary intake of AST, the composition and level of 84 GLS molecular species in the mouse cortex were determined using the LC-MS strategy. The results showed that the total GLS was reduced, most complex GLS was decreased, and simple GLS (GM3 and GM1a) was increased in the APP/PS1 mouse cortex. Notably, F-AST mainly regulated complex GLS (p < 0.001), whereas AST-DHA primarily reacted with simple GLS (p < 0.001). OAc-GQ1a(38:1), OAc-GQ1a(36:1), GD1a(36:1), and GM3(38:1) decreased 3.73, 2.31, and 2.29-fold and increased 3.54-fold, respectively, and were identified as potential AD biomarkers in the cortices of APP/PS1 mice. Additionally, the AST diet significantly upregulated the mRNA expression of GLS synthesizing genes (st3gal5, st8sia1, b3galt4, st3fal2, and soat) and siae (p < 0.05) and down-regulated that of the GLS catabolizing gene hexa (p < 0.01). In conclusion, improving GLS homeostasis in the AD mouse cortex might be a critical pathway to explain the AD-preventing effect of AST.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Gangliosídeos , Camundongos Transgênicos , Xantofilas/farmacologia , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
17.
Sci Rep ; 13(1): 17548, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845390

RESUMO

Atrial fibrillation (AF) and related cardiovascular complications pose a heavy burden to patients and society. Mounting evidence suggests a close association between nonalcoholic fatty liver disease (NAFLD) and AF. NAFLD and AF transcriptomic datasets were obtained from GEO database and analyzed using several bioinformatics approaches. We established a NAFLD-AF associated gene diagnostic signature (NAGDS) using protein-protein interaction analysis and machine learning, which was further quantified through RT-qPCR. Potential miRNA targeting NAGDS were predicted. Gene modules highly correlated with NAFLD liver pathology or AF occurrence were identified by WGCNA. Enrichment analysis of the overlapped genes from key module revealed that T-cell activation plays essential roles in NAFLD and AF, which was further confirmed by immune infiltration. Furthermore, an integrated SVM-RFE and LASSO algorithm was used to identify CCL4, CD48, ITGB2, and RNASE6 as NAGDS, all of which were found to be upregulated in NAFLD and AF mouse tissues. Patients with higher NAGDS showed augmented T cell and macrophage immunity, more advanced liver pathological characteristics, and prolonged AF duration. Additionally, hsa-miR-26a-5p played a central role in the regulation of NAGDS. Our findings highlight the central role of T-cell immune response in linking NAFLD to AF, and established an accurate NAGDS diagnostic model, which could serve as potential targets for immunoregulatory therapy.


Assuntos
Fibrilação Atrial , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Fibrilação Atrial/diagnóstico , Transcriptoma , MicroRNAs/genética
18.
Front Endocrinol (Lausanne) ; 14: 1099134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777361

RESUMO

Background: Fibrosis is increasingly considered as a major contributor in adipose tissue dysfunction. Hypoxic activation of hypoxia-inducible factor 1α (HIF-1α) induces a profibrotic transcription, leading to adipose fibrosis. Nicotinamide mononucleotide (NMN), a member of the vitamin B3 family, has been shown to relieve hepatic and cardiac fibrosis, but its effects on hypoxic adipose fibrosis and the underlying mechanism remain unclear. We aimed to elucidate the roles of NMN in regulating HIF-1α and fibrosis in hypoxic adipose tissue. Methods: Mice were placed in a hypobaric chamber for four weeks to induce adipose fibrosis. NMN (500 mg/kg, every three days) was administered by intraperitoneal injection. In vitro, Stromal vascular fractions (SVF) cells were treated by hypoxia with or without NMN (200µM), sirtinol (25µM, a SIRT1 inhibitor) and CoCl2 (100µM, a HIF1α enhancer). The effects of NMN on hypoxia-associated adipose fibrosis, inflammation, NAD+/SIRT1 axis alteration, and HIF-1α activation were evaluated by real-time polymerase chain reaction (PCR), western blots, immunohistochemistry staining, immunoprecipitation, and assay kits. Results: Mice placed in a hypoxic chamber for four weeks showed obvious adipose fibrosis and inflammation, which were attenuated by NMN. NMN also restore the compromised NAD+/SIRT1 axis and inhibited the activation of HIF-1α induced by hypoxia. In hypoxia-induced SVFs, the SIRT1 inhibitor sirtinol blocked the anti-fibrotic and anti-inflammatory effects of NMN, upregulated the HIF-1α and its acetylation level. The HIF1α stabilizer CoCl2 showed similar effects as sirtinol. Conclusion: NMN effectively attenuated HIF-1α activation-induced adipose fibrosis and inflammation by restoring the compromised NAD+/SIRT1 axis.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Camundongos , Animais , Mononucleotídeo de Nicotinamida/farmacologia , Sirtuína 1 , Hipóxia/complicações , Tecido Adiposo , Inflamação/tratamento farmacológico , Fibrose
19.
PLoS One ; 18(11): e0294282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37956134

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in the clinic. Aging plays an essential role in the occurrence and development of AF. Herein, we aimed to identify the aging-related genes associated with AF using bioinformatics analysis. Transcriptome profiles of AF were obtained from the GEO database. Differential expression analysis was performed to identify AF-specific aging-related genes. GO and KEGG enrichment analyses were performed. Subsequently, the LASSO, SVM-RFE, and MCC algorithms were applied to screen aging-related genes. The mRNA expression of the screened genes was validated in the left atrial samples of aged rapid atrial pacing-induced AF canine models and their counterparts. The ROC curves of them were drawn to evaluate their diagnostic potential. Moreover, CIBERSORT was used to estimate immune infiltration. A correlation analysis between screened aging-related genes and infiltrating immune cells was performed. A total of 24 aging-related genes were identified, which were found to be mainly involved in the FoxO signaling pathway, PI3K-Akt signaling pathway, longevity regulating pathway, and peroxisome according to functional enrichment analysis. LASSO, SVM-RFE, and MCC algorithms identified three genes (HSPA9, SOD2, TXN). Furthermore, the expression levels of HSPA9 and SOD2 were validated in aged rapid atrial pacing-induced AF canine models. HSPA9 and SOD2 could be potential diagnostic biomarkers for AF, as evidenced by the ROC curves. Immune infiltration and correlation analysis revealed that HSPA9 and SOD2 were related to immune cell infiltrates. Collectively, these findings provide novel insights into the potential aging-related genes associated with AF. HSPA9 and SOD2 may play a significant role in the occurrence and development of AF.


Assuntos
Fibrilação Atrial , Animais , Cães , Fibrilação Atrial/genética , Fosfatidilinositol 3-Quinases , Envelhecimento/genética , Doença do Sistema de Condução Cardíaco , Longevidade
20.
Trends Cell Biol ; 32(6): 479-489, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34952750

RESUMO

The contribution of thermogenic adipocytes to maintain systemic metabolic homeostasis has been increasingly appreciated in recent years. It is now recognized that different types (e.g., brown, beige) and subtypes of thermogenic adipocytes may arise from various developmental origins. In addition to the adrenergic pathway, other signals can activate thermogenesis, including paracrine communication between immune cells within the adipose tissue niche and thermogenic adipocytes. In this opinion article we highlight the recently discovered beige-selective signaling between acetylcholine from immune cells and cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) in activated beige adipocytes. We present our current knowledge of how this previously unrecognized adipose non-neuronal cholinergic signaling pathway mediates beige thermoregulation, and discuss its impact on whole-body fitness and its therapeutic potential as a novel target for combating metabolic disease.


Assuntos
Adipócitos Bege , Receptores Nicotínicos , Adipócitos/metabolismo , Adipócitos Bege/metabolismo , Tecido Adiposo/metabolismo , Metabolismo Energético , Humanos , Receptores Nicotínicos/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA