Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(16): 5917-5928, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37053432

RESUMO

The adsorption of nonionic surfactants onto hydrophilic nanoparticles (NPs) is anticipated to increase their stability in aqueous medium. While nonionic surfactants show salinity- and temperature-dependent bulk phase behavior in water, the effects of these two solvent parameters on surfactant adsorption and self-assembly onto NPs are poorly understood. In this study, we combine adsorption isotherms, dispersion transmittance, and small-angle neutron scattering (SANS) to investigate the effects of salinity and temperature on the adsorption of pentaethylene glycol monododecyl ether (C12E5) surfactant on silica NPs. We find an increase in the amount of surfactant adsorbed onto the NPs with increasing temperature and salinity. Based on SANS measurements and corresponding analysis using computational reverse-engineering analysis of scattering experiments (CREASE), we show that the increase in salinity and temperature results in the aggregation of silica NPs. We further demonstrate the non-monotonic changes in viscosity for the C12E5-silica NP mixture with increasing temperature and salinity and correlate the observations to the aggregated state of NPs. The study provides a fundamental understanding of the configuration and phase transition of the surfactant-coated NPs and presents a strategy to manipulate the viscosity of such dispersion using temperature as a stimulus.

2.
Langmuir ; 36(14): 3703-3712, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32202121

RESUMO

The crucial roles of the ionization state and counterion presence on the phase behavior of fatty acid in aqueous solutions are well-established. However, the effects of counterions on the adsorption and morphological state of fatty acid on nanoparticle surfaces are largely unknown. This knowledge gap exists due to the high complexity of the interactions between nanoparticles, counterions, and fatty acid molecules in aqueous solution. In this study, we use adsorption isotherms, small angle neutron scattering, and all-atom molecular dynamic simulations to investigate the effect of addition of ethanolamine as a counterion on the adsorption and self-assembly of decanoic acid onto aminopropyl-modified silica nanoparticles. We show that the morphology of the fatty acid assemblies on silica nanoparticles changes from discrete surface patches to a continuous bilayer by increasing concentration of the counterion. This morphological behavior of fatty acid on the oppositely charged nanoparticle surface alters the interfacial activity of the fatty acid-nanoparticle complex and thus governs the stability of the foam formed by the mixture. Our study provides new insights into the structure-property relationship of fatty acid-nanoparticle complexes and outlines a framework to program the stability of foams formed by mixtures of nanoparticles and amphiphiles.

3.
Macromol Rapid Commun ; 40(13): e1900191, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31162768

RESUMO

Printing of polymeric composites into desired patterns and shapes has revolutionized small-scale manufacturing processes. However, high-resolution printing of adaptive materials that change shape in response to external stimuli remains a significant technical challenge. The article presents a new approach of printing thermoresponsive poly(N-isopropylacrylamide) into macroscopic structures that dynamically reconfigure in response to heating and cooling cycles. The printing process is performed using an external laser source, which enables thermal cross-linking of the polymer ink consisting of monomer, cross-linker, initiator, and inorganic nanoparticles. It is shown that the addition of silica nanoparticles enhances the mechanical properties of poly(N-isopropylacrylamide) while maintaining its thermoresponsiveness at micrometer-scale resolution, which otherwise is not feasible by extrusion-based three-dimensional printing techniques. It is demonstrated that spatial reconfiguration of the printed monolayers upon increasing temperature is governed by the local geometry, which enables mimicking the reconfiguration of plant leaves in a natural environment. The study lays a foundation for developing a new fabrication platform to print thermoresponsive structures that may find applications in biomedical implants, sensors, and other multi-responsive materials.


Assuntos
Resinas Acrílicas/química , Nanocompostos/química , Polímeros/química , Dióxido de Silício/química , Temperatura , Reagentes de Ligações Cruzadas/química , Impressão Tridimensional
4.
JACS Au ; 3(3): 889-904, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006757

RESUMO

In this paper, we present an open-source machine learning (ML)-accelerated computational method to analyze small-angle scattering profiles [I(q) vs q] from concentrated macromolecular solutions to simultaneously obtain the form factor P(q) (e.g., dimensions of a micelle) and the structure factor S(q) (e.g., spatial arrangement of the micelles) without relying on analytical models. This method builds on our recent work on Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) that has either been applied to obtain P(q) from dilute macromolecular solutions (where S(q) ∼1) or to obtain S(q) from concentrated particle solutions when P(q) is known (e.g., sphere form factor). This paper's newly developed CREASE that calculates P(q) and S(q), termed as "P(q) and S(q) CREASE", is validated by taking as input I(q) vs q from in silico structures of known polydisperse core(A)-shell(B) micelles in solutions at varying concentrations and micelle-micelle aggregation. We demonstrate how "P(q) and S(q) CREASE" performs if given two or three of the relevant scattering profiles-I total(q), I A(q), and I B(q)-as inputs; this demonstration is meant to guide experimentalists who may choose to do small-angle X-ray scattering (for total scattering from the micelles) and/or small-angle neutron scattering with appropriate contrast matching to get scattering solely from one or the other component (A or B). After validation of "P(q) and S(q) CREASE" on in silico structures, we present our results analyzing small-angle neutron scattering profiles from a solution of core-shell type surfactant-coated nanoparticles with varying extents of aggregation.

5.
J Phys Chem C Nanomater Interfaces ; 126(5): 2531-2541, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35178138

RESUMO

The assembled state of nanoparticles (NPs) within porous matrices plays a governing role in directing their biological, electronic, and catalytic properties. However, the effects of the spatial confinement and environmental factors, such as salinity, on the NP assemblies within the pores are poorly understood. In this study, we use adsorption isotherms, spectrophotometry, and small-angle neutron scattering to develop a better understanding of the effect of spatial confinement on the assembled state and catalytic performance of gold (Au) NPs in propylamine-functionalized SBA-15 and MCM-41 mesoporous silica materials (mSiO2). We carry out a detailed investigation of the effect of pore diameter and ionic strength on the packing and spatial distribution of AuNPs within mSiO2 to get a comprehensive insight into the structure, functioning, and activity of these NPs. We demonstrate the ability of the adsorbed AuNPs to withstand aggregation under high salinity conditions. We attribute the observed preservation of the adsorbed state of AuNPs to the strong electrostatic attraction between oppositely charged pore walls and AuNPs. The preservation of the structure allows the AuNPs to retain their catalytic activity for a model reaction in high salinity aqueous solution, here, the reduction of p-nitrophenol to p-aminophenol, which otherwise is significantly diminished due to bulk aggregation of the AuNPs. This fundamental study demonstrates the critical role of confinement and dispersion salinity on the adsorption and catalytic performance of NPs.

6.
J Colloid Interface Sci ; 600: 882-886, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062345

RESUMO

Aqueous foams are encountered in many commercial products used in our everyday lives and are widely studied. However, the formation and stabilization of foams using high alcohol content (>75%) solvents such as ethanol is still a scientific challenge. Herein, we report for the first-time foams based on high ethanol content showing long-term stability by using natural fatty acid crystals. The platelet-shape crystals are adsorbed at the air-water surface protecting the bubbles against coalescence. The melting of crystals triggers the foam destabilization leading to thermostimulable high ethanol content foams. These foams can be used as a new formulation strategy for alcohol-based hand sanitizers to better clean hands, protect the skin by the presence of fatty acids, and limit the transmission of virus and other pathogens.


Assuntos
Ácidos Graxos , Água , Aerossóis , Etanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA