Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Cosmet Investig Dermatol ; 17: 1495-1504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933605

RESUMO

Background: Vitiligo is an autoimmune disease characterized by loss of skin pigmentation and currently has no effective treatment. This study aimed to investigate the function of SIRT7, being an important desuccinylase mediating multiple disease progression, and its mechanism in vitiligo progression. Methods: Normal human melanocytes (NHM) PIG1 and vitiligo human melanocytes (VHM) PIG3V were utilized in this research. The role of sirtuin 7 (SIRT7) and Ezrin (EZR) on melanin synthesis was investigated by detecting tyrosinase activity, melanin content, α-MSH levels, and the protein levels of melanin-related markers. The function of EZR was identified via rescue experiments, while the underlying mechanism was investigated via bioinformatic analysis, co-immunoprecipitation (co-IP), immunoprecipitation (IP), and Western blot techniques. Results: Results showed that only SIRT7 was highly expressed in vitiligo human melanocytes, where knockingdown SIRT7 translated into increased melanin synthesis in melanocytes. Mechanistically, SIRT7 knockdown promoted the succinylation of EZR at the Lys (K)60 site. Moreover, overexpressing EZR induced higher melanin synthesis in melanocytes, while its knocking down exerted the opposite effect by inhibiting SIRT7 knockdown-induced melanin synthesis. Conclusion: SIRT7 inhibited melanin synthesis in melanocytes by suppressing the succinylation of EZR. These findings are envisaged to provide a novel theoretical basis for vitiligo treatment.

2.
Inflammation ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472598

RESUMO

Acute kidney injury (AKI) poses a significant global public health challenge. Current methods for detecting AKI rely on monitoring changes in serum creatinine (Scr), blood urea nitrogen (BUN), urinary output and some commonly employed biomarkers. However, these indicators are usually neither specific nor sensitive to AKI, especially in cases of mild kidney injury. AKI is accompanied by severe inflammatory reactions, resulting in the upregulation of numerous inflammation-associated proteins in the plasma. Plasma biomarkers are a noninvasive method for detecting kidney injury, and to date, plasma inflammation-associated cytokines have not been adequately studied in AKI patients. The objective of our research was to identify novel inflammatory biomarkers for AKI. We utilized Olink proteomics to analyze the alterations in plasma inflammation-related proteins in the serum of healthy mice (n = 2) or mice treated with cisplatin (n = 6). Additionally, transcriptome datasets for the lipopolysaccharide (LPS), cisplatin, and ischemia‒reperfusion injury (IRI) groups were obtained from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We calculated the intersection of differentially expressed proteins (DEPs) and genes (DEGs) from both datasets. In the Olink proteomics analysis, the AKI group had significantly greater levels of 11 DEPs than did the control group. In addition, 56 common upregulated DEGs were obtained from the transcriptome dataset. The expression of CXCL1 and TNFRSF12A overlapped across all the datasets. The transcription and protein expression levels of CXCL1 and TNFRSF12A were detected in vivo. The gene and protein levels of CXCL1 and TNFRSF12A were significantly increased in different AKI mouse models and clinical patients, suggesting that these genes and proteins could be potential specific biomarkers for the identification of AKI.

3.
Sci Rep ; 14(1): 964, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200058

RESUMO

Immunotherapy has emerged as a promising modality for addressing advanced or conventionally drug-resistant malignancies. When it comes to lung adenocarcinoma (LUAD), T cells have demonstrated significant influence on both antitumor activity and the tumor microenvironment. However, their specific contributions remain largely unexplored. This investigation aimed to delineate molecular subtypes and prognostic indicators founded on T cell marker genes, thereby shedding light on the significance of T cells in LUAD prognosis and precision treatment. The cellular phenotypes were identified by scrutinizing the single-cell data obtained from the GEO repository. Subsequently, T cell marker genes derived from single-cell sequencing analyses were integrated with differentially expressed genes from the TCGA repository to pinpoint T cell-associated genes. Utilizing Cox analysis, molecular subtypes and prognostic signatures were established and subsequently verified using the GEO dataset. The ensuing molecular and immunological distinctions, along with therapy sensitivity between the two sub-cohorts, were examined via the ESTIMATE, CIBERSORT, and ssGSEA methodologies. Compartmentalization, somatic mutation, nomogram development, chemotherapy sensitivity prediction, and potential drug prediction analyses were also conducted according to the risk signature. Additionally, real-time qPCR and the HPA database corroborated the mRNA and protein expression patterns of signature genes in LUAD tissues. In summary, this research yielded an innovative T cell marker gene-based signature with remarkable potential to prognosis and anticipate immunotherapeutic outcomes in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , RNA , Sequência de Bases , Adenocarcinoma de Pulmão/genética , Complexo CD3 , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA