Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cancer Cell Int ; 24(1): 100, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461238

RESUMO

Allogeneic tumors are eradicated by host immunity; however, it is unknown how it is initiated until the report in Nature by Yaron Carmi et al. in 2015. Currently, we know that allogeneic tumors are eradicated by allogeneic IgG via dendritic cells. AlloIgG combined with the dendritic cell stimuli tumor necrosis factor alpha and CD40L induced tumor eradication via the reported and our proposed potential signaling pathways. AlloIgG triggers systematic immune responses targeting multiple antigens, which is proposed to overcome current immunotherapy limitations. The promising perspectives of alloIgG immunotherapy would have advanced from mouse models to clinical trials; however, there are only 6 published articles thus far. Therefore, we hope this perspective view will provide an initiative to promote future discussion.

2.
Pharmacol Res ; 209: 107419, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284428

RESUMO

Hepatocellular carcinoma (HCC) stands as the sixth most prevalent cancer and the third leading cause of cancer mortality globally. Despite surgical resection being the preferred approach for early-stage HCC, most patients are diagnosed at intermediate to advanced stages, limiting treatment options to chemotherapy and immunotherapy, which often yield poor outcomes. Extracellular vesicles (EVs), minute lipid-bilayered particles released by diverse cells under various physiological and pathological conditions, are crucial for mediating communication between cells. Mounting evidence indicates that EVs sourced from different cells can profoundly influence the HCC tumor microenvironment (TME), thereby affecting the progression of HCC. Given their immunogenicity and liver-targeting properties, these EVs not only hold promise for HCC treatment but also provide avenues for advancing early diagnostic methods and assessing prognosis. This review not only describes the function of EVs within the HCC tumor microenvironment but also analyzes their therapeutic advantages and explores their significance in various therapeutic approaches for HCC, including chemotherapy, immunotherapy, combination therapy, and their role as innovative drug delivery carriers. Furthermore, it highlights the potential of EVs as biomarkers for the diagnosis and prognosis of HCC.

3.
Semin Cancer Biol ; 80: 379-390, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33002608

RESUMO

Rapid progress in molecular cancer biology coupled with the discovery of novel oncology drugs has opened new horizons for cancer target discovery. As one of the crucial signaling pathways related to tumorigenesis, hypoxia-inducible factor-1 (HIF-1) coordinates the activity of many transcription factors and their downstream molecules that impact tumor growth and metastasis. Accumulating evidence suggests that the transcriptional responses to acute hypoxia are mainly attributable to HIF-1α. Moreover, the overexpression of HIF-1α in several solid cancers has been found to be strongly associated with poor prognosis. Thus, pharmacological targeting of the HIF-1 signaling pathways has been considered as a new strategy for cancer therapy in the recent years. Although over the past decade, tremendous efforts have been made in preclinical studies to develop new HIF-1 inhibitors from natural products (reservoirs of novel therapeutic agents), to date, these efforts have not been successfully translated into clinically available treatments. In this review, we provide new insights into the bio-pharmacological considerations for selecting natural compounds as potential HIF-1 inhibitors to accelerate anti-cancer drug development. In addition, we highlighted the importance of assessing the dependency of cancer on HIF1A to shortlist cancer types as suitable disease models. This may subsequently lead to new paradigms for discovering more HIF-1 inhibitors derived from natural products and facilitate the development of potent therapeutic agents targeting specific cancer types.


Assuntos
Antineoplásicos , Produtos Biológicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Hipóxia , Fator 1 Induzível por Hipóxia/uso terapêutico , Neoplasias/patologia
4.
Pharmacol Res ; 191: 106756, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019192

RESUMO

Extracellular vesicles (EVs) are membrane-encapsulated vesicles released by almost all cell types, which participate in intercellular communication by delivering different types of molecular cargoes, such as non-coding RNAs (ncRNAs). Accumulating evidence suggests that tumor-derived EVs act as a bridge for intercellular crosstalk between tumor cells and surrounding cells, including immune cells. Tumor-derived EVs containing ncRNAs (TEV-ncRNAs) mediate intercellular crosstalk to manipulate immune responses and affect the malignant phenotypes of cancer cells. In this review, we summarize the double-edged roles and the underlying mechanisms of TEV-ncRNAs in regulating innate and adaptive immune cells. We also highlight the advantages of using TEV-ncRNAs in liquid biopsies for cancer diagnosis and prognosis. Moreover, we outline the use of engineered EVs to deliver ncRNAs and other therapeutic agents for cancer therapy.


Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Imunidade Inata , Comunicação Celular
5.
Biochem Biophys Res Commun ; 567: 29-34, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34133999

RESUMO

Ethanol affects the nervous system of animals to cause a boost of feeding, sexual, verbal, and locomotor behaviors. To understand the neural mechanisms of these ethanol-induced behaviors, we investigated a neural pathway of ethanol-induced feeding behavior by guanylate cyclases and serotonin signals in C. elegans. We recorded the intracellular calcium signaling of seven sensory neurons in response to ethanol, and only found a significant increase of calcium signaling in BAG among the seven sensor neurons. And both guanylate cyclases GCY-31 and GCY-33 were crucial signaling protein of calcium response in BAG neurons. In addition, serotonin, released from NSM motor neurons, promoted feeding behavior under ethanol stimulation. And the rescue experiment of double mutant indicated the guanylate cyclases and serotonin in the same signaling pathway. So BAG neurons respond to alcohol through the promotion of intracellular calcium signaling, and then the downstream motor neurons NSM release serotonin to regulate the feeding behavior in C. elegans. These findings revealed a neural circuit to understand how the nervous system responds to ethanol and generates corresponding behavior.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Etanol/farmacologia , Guanilato Ciclase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Etanol/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
6.
Int J Obes (Lond) ; 45(12): 2638-2647, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446844

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have been implicated in various important biological processes, however, its role in energy balance and obesity remains largely unknown. METHODS: Differentially expressed lncRNAs in the hypothalamus of diet-induced obesity (DIO) mice versus chow-fed mice were identified by RNA sequencing. Lentivirus-mediated overexpression and knockdown of a novel lncRNA, AK044061, were used to assess its role in energy balance and the development of DIO. RNA immunoprecipitation (RIP) and pull down assays were carried out to analyze the interaction between lncRNA AK044061 and RelA, an NF-κB subunit. RESULTS: LncRNA AK044061 was upregulated in the hypothalamus of DIO mice. Acute intracerebroventricular (i.c.v.) infusion of glucose reduced the expression of lncRNA AK044061, whereas an overnight of fasting enhanced its expression. RNA in situ hybridization data showed that AK044061 was expressed in the neurons of the arcuate nucleus (ARC). Lentivirus-mediated overexpression of AK044061 in ARC cells, or in the neurons of the ARC nucleus led to an obesity-like phenotype and related metabolic disorders. Furthermore, knockdown of lncRNA AK044061 in Agouti-related peptide (AgRP)-expressing neurons mitigated DIO and its related metabolic dysregulations. In mechanism, we showed that lncRNA AK044061 was associated with RelA and could enhance the NF-κB reporter activity. The effect of lncRNA AK044061 on energy balance is mediated by NF-κB. CONCLUSIONS: Our findings suggest that excessive lncRNA AK044061 in the ARC nucleus leads to energy imbalance and obesity. LncRNA AK044061 expressed in the AgRP neurons is important in the development of dietary obesity in mice.


Assuntos
Hipotálamo/fisiologia , Obesidade/genética , RNA Longo não Codificante/efeitos adversos , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos/metabolismo , RNA Longo não Codificante/uso terapêutico
8.
Invest New Drugs ; 38(6): 1888-1898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32488569

RESUMO

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) contain 12 family members(CEACAM1、CEACAM3、CEACAM4、CEACAM5、CEACAM6、CEACAM7、CEACAM8、CEACAM16、CEACAM18、CEACAM19、CEACAM20 and CEACAM21)and are expressed diversely in different normal and tumor tissues. CEA (CEACAM5) has been used as a tumor biomarker since 1965. Here we review the latest research and development of the structures, expression, and function of CEACAMs in normal and tumor tissues, and their application in the tumor diagnosis, prognosis, and treatment. We focus on recent clinical studies of CEA targeted cancer immunotherapies, including bispecific antibody (BsAb) for radio-immuno-therapy and imaging, bispecific T cell engager (BiTE) and chimeric antigen receptor T cells (CAR-T). We summarize the promising clinical relevance and challenges of these approaches and give perspective view for future research. This review has important implications in understanding the diversified biology of CEACAMs in normal and tumor tissues, and their new role in tumor immunotherapy.


Assuntos
Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Proteínas Ligadas por GPI/imunologia , Imunoterapia , Neoplasias/terapia , Animais , Antígenos CD/química , Moléculas de Adesão Celular/química , Proteínas Ligadas por GPI/química , Humanos
9.
Virol J ; 17(1): 101, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650799

RESUMO

BACKGROUND: Herpes simplex virus (HSV) can cause encephalitis. Its infected cell polypeptide 47 (ICP47), encoded by immediate-early gene US12, promotes immune escape. ICP47 was modified in the clinically approved oncolytic HSV (oHSV) T-Vec. However, transcription regulatory sequence (TRS) and transcription regulatory factor (TRF) of HSV US12 are seldom reported. METHODS: Previously, our laboratory isolated a new HSV strain named HSV-1-LXMW from a male patient with oral herpes in Beijing, China. Firstly, the genetic tree was used to analyze its genetic relationship. The US12 TRS and TRF in HSV-1-LXMW were found by using predictive software. Secondly, the further verification by the multi-sequence comparative analysis shown that the upstream DNA sequence of HSV US12 gene contained the conserved region. Finally, the results of literature search shown that the expression of transcription factors was related to the tissue affinity of HSV-1 and HSV-2, so as to increase the new understanding of the transcriptional regulation of HSV biology and oncolytic virus (OVs) therapy. RESULTS: Here we reported the transcriptional regulation region sequence of our new HSV-1-LXMW, and its close relationship with HSV-1-CR38 and HSV-1-17. Importantly we identified eight different kinds of novel TRSs and TRFs of HSV US12 for the first time, and found they are conserved among HSV-1 (c-Rel, Elk-1, Pax-4), HSV-2 (Oct-1, CF2-II, E74A, StuAp) or both HSVs (HNF-4). The TRFs c-Rel and Oct-1 are biologically functional respectively in immune escape and viral replication during HSV infection. CONCLUSIONS: Our findings have important implication to HSV biology, infection, immunity and oHSVs.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Proteínas Imediatamente Precoces/genética , Evasão da Resposta Imune , Transcrição Gênica , China , Herpes Simples/virologia , Herpesvirus Humano 1/classificação , Humanos , Masculino , Filogenia , Replicação Viral
10.
Mol Genet Genomics ; 289(1): 25-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24202550

RESUMO

bHLH/PAS genes encode a family of basic helix-loop-helix (bHLH) transcription factors with bHLH, PAS and PAS_3 domain. bHLH/PAS genes are involved in many essential physiological and developmental processes, such as hypoxic response neural development, the circadian clock, and learning ability. Despite their important functions, the origin and evolution of this bHLH/PAS gene family has yet to be elucidated. In this study, we aim to explore the origin, evolution, gene structure conservation of this gene family and provide a model to analyze the evolution of other gene families. Our results show that genes of the bHLH/PAS family only exist in metazoans. They may have originated from the common ancestor of metazoans and expanded into vertebrates. We identified bHLH/PAS genes in more than ten species representing the main lineages and constructed the phylogenetic trees (Beyasian, ML and NJ) to classify them into three groups. The exon-intron structure analysis revealed that a relatively conserved "1001-0210" eight-exon structure exists in most groups and lineages. In addition, we found the exon fusion pattern in several groups in this conserved eight-exon structure. Further analysis indicated that bHLH/PAS protein paralogs evolved from several gene duplication events followed by functional divergence and purifying selection. We presented a phylogenetic model to describe the evolutionary history of the exon structures of bHLH/PAS genes. Taken together, our study revealed the evolutionary model, functional divergence and gene structure conservation of bHLH/PAS genes. These findings provide clues for the functional and evolutionary mechanism of bHLH/PAS genes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Molecular , Éxons/genética , Variação Genética/genética , Íntrons/genética , Família Multigênica/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia , Seleção Genética , Homologia de Sequência de Aminoácidos
11.
Cell Prolif ; 57(8): e13644, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594879

RESUMO

Chemotherapy, radiotherapy, and immunotherapy represent key tumour treatment strategies. Notably, immune checkpoint inhibitors (ICIs), particularly anti-programmed cell death 1 (PD1) and anti-programmed cell death ligand 1 (PD-L1), have shown clinical efficacy in clinical tumour immunotherapy. However, the limited effectiveness of ICIs is evident due to many cancers exhibiting poor responses to this treatment. An emerging avenue involves triggering non-apoptotic regulated cell death (RCD), a significant mechanism driving cancer cell death in diverse cancer treatments. Recent research demonstrates that combining RCD inducers with ICIs significantly enhances their antitumor efficacy across various cancer types. The use of anti-PD-1/PD-L1 immunotherapy activates CD8+ T cells, prompting the initiation of novel RCD forms, such as ferroptosis, pyroptosis, and necroptosis. However, the functions and mechanisms of non-apoptotic RCD in anti-PD1/PD-L1 therapy remain insufficiently explored. This review summarises the emerging roles of ferroptosis, pyroptosis, and necroptosis in anti-PD1/PD-L1 immunotherapy. It emphasises the synergy between nanomaterials and PD-1/PD-L1 inhibitors to induce non-apoptotic RCD in different cancer types. Furthermore, targeting cell death signalling pathways in combination with anti-PD1/PD-L1 therapies holds promise as a prospective immunotherapy strategy for tumour treatment.


Assuntos
Ferroptose , Inibidores de Checkpoint Imunológico , Imunoterapia , Necroptose , Neoplasias , Piroptose , Humanos , Piroptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Necroptose/efeitos dos fármacos , Necroptose/imunologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Animais , Morte Celular Regulada
12.
Front Oncol ; 14: 1437698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267831

RESUMO

As global population ageing accelerates, cancer emerges as a predominant cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer cell growth and death, given their involvement in regulating downstream gene expression levels and numerous cellular processes. Cell death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion and metastasis. Understanding the interplay between lncRNAs and the diverse forms of cell death in cancer is imperative. Modulating lncRNA expression can regulate cancer onset and progression, offering promising therapeutic avenues. This review discusses the mechanisms by which lncRNAs modulate non-apoptotic RCDs in cancer, highlighting their potential as biomarkers for various cancer types. Elucidating the role of lncRNAs in cell death pathways provides valuable insights for personalised cancer interventions.

13.
Int Immunopharmacol ; 138: 112633, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986299

RESUMO

Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.


Assuntos
Vesículas Extracelulares , Piroptose , Humanos , Vesículas Extracelulares/metabolismo , Animais , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/imunologia
14.
Cell Death Discov ; 10(1): 23, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216595

RESUMO

Extracellular vesicles (EVs) have gained increasing recognition as significant regulators of intercellular communication in various physiological and pathological processes. These vesicles play a pivotal role in cancer progression by facilitating the transfer of diverse cargoes, including lipids, proteins, and nucleic acids. Regulated cell death (RCD), the orderly and autonomous death of cells, is controlled by a variety of biomacromolecules and, in turn, influences various biological processes and cancer progression. Recent studies have demonstrated that EV cargoes regulate diverse oncogenes and tumor suppressors to mediate different nonapoptotic forms of RCD, notably ferroptosis, pyroptosis, and necroptosis. Nevertheless, comprehensive exploration of EV-mediated nonapoptotic RCD forms in the context of cancer has not been performed. This review summarizes the progress regarding the biological functions and underlying mechanisms of EVs in mediating nonapoptotic RCD by delivery of cargoes to regulate tumor progression. Additionally, the review delves into the potential clinical applications of EV-mediated cell death and its significance in the areas of cancer diagnosis and therapy.

15.
Biomed Pharmacother ; 176: 116874, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850661

RESUMO

Copper, an indispensable micronutrient, is implicated in numerous vital biological processes and is essential for all physiological activities. Recently, the discovery of a novel type of copper-dependent cell death, known as cuproptosis, has shed light on its role in cancer development. Extensive research is currently underway to unravel the mechanisms underlying cuproptosis and its correlation with various cancer types. In this review, we summarize the findings regarding the roles and mechanisms of cuproptosis in various cancer types, including colorectal cancer, lung cancer, gastric cancer, breast cancer, liver cancer and cutaneous melanoma. Furthermore, the effects of copper-related agents such as copper chelators and copper ionophores on cell proliferation, apoptosis, angiogenesis, tumor immunity, and chemotherapy resistance have been explored in cancer preclinical and clinical trials. These insights provide promising avenues for the development of prospective anticancer drugs aimed at inducing cuproptosis.


Assuntos
Cobre , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Cobre/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos
16.
Front Pharmacol ; 15: 1378292, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523637

RESUMO

Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17ß-hydroxysteroid dehydrogenase (17ß-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5α-dihydrotestosterone), 17ß-estradiol (a potent estrogen), and 11ß-PGF2α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Novel AKR1C3 inhibitors, including natural products and analogues of existing drugs designed based on their structures and frameworks, continue to be discovered and developed in laboratories worldwide. The AKR1C3 enzyme has emerged as a key player in carcinoma progression and therapeutic resistance, posing challenges in cancer treatment. This review aims to provide a comprehensive analysis of AKR1C3's role in carcinoma development, its implications in therapeutic resistance, and recent advancements in the development of AKR1C3 inhibitors for tumor therapies.

17.
Front Oncol ; 14: 1383939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077471

RESUMO

Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.

18.
Cancer Lett ; 601: 217184, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142499

RESUMO

Prostate cancer (PCa) is the second most prevalent cancer in men worldwide, presenting a significant global public health challenge that necessitates early detection and personalized treatment. Recently, non-invasive liquid biopsy methods have emerged as promising tools to provide insights into the genetic landscape of PCa and monitor disease progression, aiding decision-making at all stages. Research efforts have concentrated on identifying liquid biopsy biomarkers to improve PCa diagnosis, prognosis, and treatment prediction. This article reviews recent research advances over the last five years utilizing extracellular vesicles (EVs) as a natural biomarker library for PCa, and discusses the clinical translation of EV biomarkers, including ongoing trials and key implementation challenges. The findings underscore the transformative role of liquid biopsy, particularly EV-based biomarkers, in revolutionizing PCa diagnosis, prediction, and treatment.


Assuntos
Biomarcadores Tumorais , Vesículas Extracelulares , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biópsia Líquida/métodos , Prognóstico , Progressão da Doença , Detecção Precoce de Câncer/métodos
19.
Mol Phylogenet Evol ; 66(3): 1002-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23261709

RESUMO

Cyclins are a family of diverse proteins that play fundamental roles in regulating cell cycle progression in Eukaryotes. Cyclins have been identified from protists to higher Eukaryotes, while its evolution remains vague and the findings turn out controversial. Current classification of cyclins is mainly based on their functions, which may not be appropriate for the systematic evolutionary analysis. In this work, we performed comparative and phylogenetic analysis of cyclins to investigate their classification, origin and evolution. Cyclins originated in early Eukaryotes and evolved from protists to plants, fungi and animals. Based on the phylogenetic tree, cyclins can be divided into three major groups designated as the group I, II and III with different functions and features. Group I plays key roles in cell cycle, group II varied in actions are kingdom (plant, fungi and animal) specific, and group III functions in transcription regulation. Our results showed that the dominating cyclins (group I) diverged from protists to plants, fungi and animals, while divergence of the other cyclins (groups II and III) has occurred in protists. We also discussed the evolutionary relationships between cyclins and cyclin-dependent kinases (CDKs) and found that the cyclins have undergone divergence in protists before the divergence of animal CDKs. This reclassification and evolutionary analysis of cyclins might facilitate understanding eukaryotic cell cycle control.


Assuntos
Ciclinas/classificação , Ciclinas/genética , Eucariotos/genética , Evolução Molecular , Variação Genética , Filogenia , Sequência de Aminoácidos , Teorema de Bayes , Biologia Computacional , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Especificidade da Espécie
20.
Cells ; 12(4)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36831315

RESUMO

Ionizing radiation induces brain inflammation and the impairment of neurogenesis by activating microglia and inducing apoptosis in neurogenic zones. However, the causal relationship between microglial activation and the impairment of neurogenesis as well as the relevant molecular mechanisms involved in microRNA (miR) remain unknown. In the present study, we employed immunohistochemistry and real-time RT-PCR to study the microglial activation and miRNA expression in mouse brains. Real-time RT-PCR, western blot, ELISA, cell proliferation and cytotoxicity assay were used in BV2 and mouse neural stem cells (NSCs). In the mouse model, we found the acute activation of microglia at 1 day and an increased number of microglial cells at 1, 7 and 120 days after irradiation at postnatal day 3 (P3), day 10 (P10) and day 21 (P21), respectively. In cell models, the activation of BV2, a type of microglial cell line, was observed after gamma irradiation. Real-time RT-PCR analysis revealed a deceased expression of miR-181b-2-3p and an increased expression of its target SRY-related high-mobility group box transcription factor 21 (SOX21) in a dose- and time-dependent fashion. The results of the luciferase reporter assay confirmed that SOX21 was the target of miR-181b-2-3p. Furthermore, SOX21 knockdown by siRNA inhibited the activation of microglia, thereby suggesting that the direct interaction of 181b-2-3p with SOX21 might be involved in radiation-induced microglial activation and proliferation. Interestingly, the gamma irradiation of NSCs increased miR-181b-2-3p expression but decreased SOX21 mRNA, which was the opposite of irradiation-induced expression in BV2 cells. As irradiation reduced the viability and proliferation of NSCs, whereas the overexpression of SOX21 restored the impaired cell viability and promoted the proliferation of NSCs, the findings suggest that the radiation-induced interaction of miR-181b-2-3p with SOX21 may play dual roles in microglia and NSCs, respectively, leading to the impairment of brain neurogenesis.


Assuntos
MicroRNAs , Células-Tronco Neurais , Camundongos , Animais , Microglia/metabolismo , MicroRNAs/genética , Linhagem Celular , RNA Interferente Pequeno/metabolismo , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA