Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 133(2): 707-719, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35462447

RESUMO

AIMS: To overcome the defective unstable production of p-coumaric acid (p-CA) using episomal plasmids and simultaneously achieve genetic stability and high-copy integration in Saccharomyces cerevisiae. METHODS AND RESULTS: Two-micron plasmids were used to obtain high titres of p-CA, but p-CA production was decreased significantly in a nonselective medium after 72 h. To overcome the defect of unstable p-CA production during fermentation, delta integration with the triosephosphate isomerase gene from Schizosaccharomyces pombe (POT1) was employed as a selection marker to integrate heterologous p-CA synthesis cassette, and the high-level p-CA-producing strain QT3-20 was identified. In shake flask fermentation, the final p-CA titre of QT3-20 reached 228.37 mg L-1 at 168 h, 11-fold higher than integrated strain QU3-20 using URA3 as the selective marker, and 9-fold higher than the best-performing episomal expression strain NKE1. Additionally, the p-CA titre and gene copy number remained stable after 100 generations of QT3-20 in a nonselective medium. CONCLUSION: We achieved high-copy genome integration and stable heterologous production of p-CA via a POT1-mediated strategy in S. cerevisiae. SIGNIFICANCE AND IMPACT OF STUDY: With superior genetic stability and production stability in a nonselective medium during fermentation, the high-level p-CA-producing strain constructed via POT1-mediated delta integration could serve as an efficient platform strain, to eliminate the threat of unstable and insufficient supply for future production of p-CA derivatives, make downstream processing and biosynthesis much simpler.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ácidos Cumáricos/metabolismo , Fermentação , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-33361299

RESUMO

Bacteria have evolved distinct molecular mechanisms as a defense against oxidative stress. The foremost regulator of the oxidative stress response has been found to be OxyR. However, the molecular details of regulation upstream of OxyR remain largely unknown and need further investigation. Here, we characterize an oxidative stress and antibiotic tolerance regulator, OsaR (PA0056), produced by Pseudomonas aeruginosa Knocking out of osaR increased bacterial tolerance to aminoglycoside and ß-lactam antibiotics, as well as to hydrogen peroxide. Expression of the oxyR regulon genes oxyR, katAB, and ahpBCF was increased in the osaR mutant. However, the OsaR protein does not regulate the oxyR regulon genes through direct binding to their promoters. PA0055, osaR, PA0057, and dsbM are in the same gene cluster, and we provide evidence that expression of those genes involved in oxidant tolerance is controlled by the binding of OsaR to the intergenic region between osaR and PA0057, which contain two divergent promoters. The gene cluster is also regulated by PA0055 via an indirect effect. We further discovered that OsaR formed intramolecular disulfide bonds when exposed to oxidative stress, resulting in a change of its DNA binding affinity. Taken together, our results indicate that OsaR is inactivated by oxidative stress and plays a role in the tolerance of P. aeruginosa to aminoglycoside and ß-lactam antibiotics.


Assuntos
Pseudomonas aeruginosa , Regulon , Aminoglicosídeos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Regulon/genética , Transativadores
3.
Front Microbiol ; 13: 990231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160239

RESUMO

Hydrophobins are small proteins from filamentous fungi, which have remarkable self-assembly properties of great potential, e.g., as drug carriers and as anti-bacterial agents, but different hydrophobins, with improved properties, are needed. HGFI (a hydrophobin from Grifola frondosa) is a class I hydrophobin, which can self-assemble into rodlet structures with a length range 100-150 nm. In this study, we identified a new hydrophobin gene (hgfII) from the mycelium of G. frondosa with a much higher transcriptional level than hgfI. Heterologous expression of hgfII was accomplished in the Pichia pastoris. X-ray photoelectron spectroscopy and water contact angle assay measurements revealed that HGFII can self-assemble into a protein film at the air-solid interface, with circular dichroism and thioflavin T fluorescence studies showing that this effect was accompanied by a decrease in α-helix content and an increase in ß-sheet content. Using atomic force microscopy, it was shown that HGFII self-assembled into rodlet-like structures with a diameter of 15-30 nm, showing that it was a class I hydrophobin, with self-assembly behavior different from HGFI. The surface hydrophobicity of HGFII was stronger than that of HGFI, meanwhile, in emulsification trials, HGFII displayed better dispersive capacity to the soybean oil than HGFI, producing a more stable and durable emulsion.

4.
J Agric Food Chem ; 70(49): 15464-15473, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454954

RESUMO

Curcumin, a polyphenol derived from turmeric, has multiple biological functions, such as anti-inflammatory, antioxidant, antibacterial and, above all, antitumor activity. Colorectal cancer is a common malignancy of the gastrointestinal tract with an extremely high mortality rate. However, the low bioavailability and poor targeting properties of curcumin generally limit its clinical application. In the present study, we designed a fusion protein GE11-HGFI as a nanodrug delivery system. The protein was connected by flexible linkers, inheriting the self-assembly properties of hydrophobin HGFI and the targeting ability of GE11. The data show that the encapsulation of curcumin by fusion protein GE11-HGFI can form uniform and stable nanoparticles with a size of only 80 nm. In addition, the nanocarrier had high encapsulation efficiency for curcumin and made it to release sustainably. Notably, the drug-loaded nanosystem selectively targeted colorectal cancer cells with high epidermal growth factor receptor expression, resulting in high aggregated concentrations of curcumin at tumor sites, thus showing a significant anticancer effect. These results suggest that the nanocarrier fusion protein has the potential to be a novel strategy for enhancing molecular bioactivity and drug targeting in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Curcumina , Nanopartículas , Humanos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Receptores ErbB/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
5.
Microb Drug Resist ; 27(10): 1360-1370, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33877915

RESUMO

Proteus vulgaris is an important foodborne opportunistic pathogen, both environmentally and clinically. The use of appropriate antibiotics has significant therapeutic effects, but has led to the emergence and spread of drug-resistant strains. In this study, a P. vulgaris strain, designated "P3M," was isolated from Penaeus vannamei in Tianjin, China. The whole genome of P3M was sequenced, generating detailed information, including the key genes involved in important metabolic pathways and their physiological functions. A total of 218 antibiotic resistance genes (ARGs) were predicted in the genome. The determination of various minimum inhibitory concentrations indicated that P3M is a multidrug-resistant (MDR) bacterium, with significant resistance to 16 antibiotics in seven categories. Determination of fractional inhibitory concentration index showed that the combination of ciprofloxacin plus tetracycline exhibited synergistic antimicrobial activity. Bioinformatics and phylogenetic analyses detected the presence of two two-component systems that mediate multidrug resistance and several mobile genetic elements involved in the horizontal transfer of ARGs in P3M. P. vulgaris strains represent a serious challenge to clinicians and infection control teams for its ubiquity worldwide and close relevance with human life. To the best of our knowledge, we report the first isolation and characterization of an important foodborne MDR P. vulgaris strain, and this study will provide necessary theoretical basis for the selection and clinical use of the appropriate antibiotics.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Doenças Transmitidas por Alimentos/microbiologia , Penaeidae/microbiologia , Proteus vulgaris/efeitos dos fármacos , Proteus vulgaris/isolamento & purificação , Animais , China , Genes Bacterianos/genética , Testes de Sensibilidade Microbiana
6.
Se Pu ; 29(12): 1236-9, 2011 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-22500453

RESUMO

A method of gel permeation chromatography-high performance liquid chromatography (GPC-HPLC) was established for the simultaneous determination of 5 main phthalate plasticizers in foods (edible oil, instant noodles, fried pastries, Saqima, etc.). The samples were extracted with petroleum ether in an ultrasonator, purified by a GPC column, and analyzed by HPLC. The chromatographic separation was achieved on a Labtech-C18 column (250 mm x 4.6 mm, 5 microm) using acetonitrile and water mixture as the mobile phases in a gradient elution mode. The developed method exhibited a linear correlation coefficient of more than 0.997 and the detection limits of 3.25 - 13.4 microg/L. The spike recoveries were between 70.4% and 113.6% with the relative standard deviations (RSDs, n = 3) of 0.3% - 5.8% at the spiked level of 50 mg/L. This method is simple, rapid and practical, and can be used for the simultaneous determination of PAEs in grease food samples.


Assuntos
Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Ácidos Ftálicos/análise , Plastificantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA