Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med ; 21(1): 453, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993934

RESUMO

BACKGROUND: The epididymis is crucial for post-testicular sperm development which is termed sperm maturation. During this process, fertilizing ability is acquired through the epididymis-sperm communication via exchange of protein and small non-coding RNAs (sncRNAs). More importantly, epididymal-derived exosomes secreted by the epididymal epithelial cells transfer sncRNAs into maturing sperm. These sncRNAs could mediate intergenerational inheritance which further influences the health of their offspring. Recently, the linkage and mechanism involved in regulating sperm function and sncRNAs during epididymal sperm maturation are increasingly gaining more and more attention. METHODS: An epididymal-specific ribonuclease T2 (RNase T2) knock-in (KI) mouse model was constructed to investigate its role in developing sperm fertilizing capability. The sperm parameters of RNase T2 KI males were evaluated and the metabolic phenotypes of their offspring were characterized. Pandora sequencing technology profiled and sequenced the sperm sncRNA expression pattern to determine the effect of epididymal RNase T2 on the expression levels of sperm sncRNAs. Furthermore, the expression levels of RNase T2 in the epididymal epithelial cells in response to environmental stress were confirmed both in vitro and in vivo. RESULTS: Overexpression of RNase T2 caused severe subfertility associated with astheno-teratozoospermia in mice caput epididymis, and furthermore contributed to the acquired metabolic disorders in the offspring, including hyperglycemia, hyperlipidemia, and hyperinsulinemia. Pandora sequencing showed altered profiles of sncRNAs especially rRNA-derived small RNAs (rsRNAs) and tRNA-derived small RNAs (tsRNAs) in RNase T2 KI sperm compared to control sperm. Moreover, environmental stress upregulated RNase T2 in the caput epididymis. CONCLUSIONS: The importance was demonstrated of epididymal RNase T2 in inducing sperm maturation and intergenerational inheritance. Overexpressed RNase T2 in the caput epididymis leads to astheno-teratozoospermia and metabolic disorder in the offspring.


Assuntos
Doenças Metabólicas , Pequeno RNA não Traduzido , Camundongos , Animais , Masculino , Epididimo/metabolismo , Sêmen , Espermatozoides/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo
2.
Hum Genomics ; 16(1): 34, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045397

RESUMO

BACKGROUND: Over the past few decades, global maternal obesity prevalence has rapidly increased. This condition may induce long-lasting pathophysiological effects on either fetal or infant health that could be attributable to unknown unique changes in the umbilical blood composition. METHODS: A total of 34 overweight/obese and 32 normal-weight pregnant women were recruited. Fifteen umbilical blood samples including 8 overweight/obese subjects and 7 normal weight women were sequenced using Targeted Bisulfite Sequencing technology to detect the average methylation level of cytosine and identify the differentially methylated region (DMR). GO and KEGG analyses were then employed to perform pathway enrichment analysis of DMR-related genes and promoters. Moreover, the mRNA levels of methylation-related genes histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) were characterized in the samples obtained from these two groups. RESULTS: Average methylated cytosine levels in both the CpG islands (CGI) and promoter significantly decreased in overweight/obese groups. A total of 1669 DMRs exhibited differences in their DNA methylation status between the overweight/obese and control groups. GO and KEGG analyses revealed that DMR-related genes and promoters were enriched in the metabolism, cancer and cardiomyopathy signaling pathways. Furthermore, the HDACs and DNMTs mRNA levels trended to decline in overweight/obese groups. CONCLUSIONS: Decreased methylated cytosine levels in overweight/obese women induce the gene expression activity at a higher level than in the control group. DMRs between these two groups in the fetal blood may contribute to the changes in gene transcription that underlie the increased risk of metabolic disorders, cancers and cardiomyopathy in their offspring.


Assuntos
Citosina , Obesidade Materna , Ilhas de CpG/genética , Citosina/metabolismo , Metilação de DNA/genética , Epigênese Genética , Feminino , Sangue Fetal/metabolismo , Humanos , Obesidade/genética , Obesidade/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Gravidez , RNA Mensageiro/metabolismo
3.
Reprod Biol Endocrinol ; 20(1): 161, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411474

RESUMO

BACKGROUND: Mammalian sperm maturation in the epididymis is mainly modulated by exosomes that are secreted into the epididymal lumen from epididymal epithelial cells (EECs). Exposure to oxidative stress (OS) resulting from being fed a high fat diet (HFD) reduces sperm fertility, which is one of the cause inducing male infertility. Thus, we hypothesize that stress-induced changes in exosome content play a critical role in mediating this detrimental process.  METHODS: An obese mouse model was established by feeding a HFD. Then oxidative stress status was measured in the mouse caput epididymis, epididymal fluid and spermatozoa. Meanwhile, epididymis-derived purified exosomes were isolated and validated. Subsequently, liquid chromatography tandem mass spectrometry (LC-MS) was used to perform proteomic analysis of purified exosomes. Gene Ontology (GO) analysis was performed along with pathway enrichment to identify differentially expressed proteins (DEPs). RESULTS: Two hundred and two DEPs mostly related to endoplasmic reticulum (ER) function were identified in the exosomes separated from the epididymis of control mice and obese mice. The ER stress and CD63 (an exosome marker), both increased in the caput epididymis of obese mice. Furthermore, an in vitro study showed that palmitic acid (PA), an-oxidative stress inducer, increased exosome biogenesis and secretion in the EECs. CONCLUSION: Oxidative stress in the epididymal microenvironment induces ER stress in the EECs. This effect alters the epididymis-derived exosome content, profile and amounts of their differentially expressed ER proteins. Such changes may affect exosome biogenesis and cargo packaging, finally leading to abnormalities in sperm maturation and fertility.


Assuntos
Exossomos , Maturação do Esperma , Masculino , Animais , Camundongos , Estresse do Retículo Endoplasmático , Camundongos Obesos , Proteômica , Sêmen , Estresse Oxidativo , Mamíferos
4.
Reprod Biol Endocrinol ; 19(1): 148, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560886

RESUMO

BACKGROUND: Recently, human infertility incidence is increasing in obese women causing it to become an emerging global health challenge requiring improved treatment. There is extensive evidence that obesity caused female reproductive dysfunction is accompanied by an endocrinological influence. Besides, systemic and tissue-specific chronic inflammatory status are common characteristics of obesity. However, the underlying molecular mechanism is unclear linking obesity to infertility or subfertility. METHODS: To deal with this question, we created an obese mouse model through providing a high fat diet (HFD) and determined the fertility of the obese mice. The morphological alterations were evaluated in both the reproductive glands and tracts, such as uterus, ovary and oviduct. Furthermore, to explore the underlying mechanism of these functional changes, the expressions of pro-inflammatory cytokines as well as the activations of MAPK signaling and NF-κB signaling were detected in these reproductive tissues. RESULTS: The obese females were successful construction and displayed subfertility. They accumulated lipid droplets and developed morphological alterations in each of their reproductive organs including uterus, ovary and oviduct. These pathological changes accompanied increases in pro-inflammatory cytokine expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in all of these sites. Such effects also accompanied increases in nuclear factor kappa B (NF-kB) expression and mitogen-activated protein kinase (MAPK) signaling pathway stimulation based on uniform time dependent increases in the NF-κB (p-NF-κB), JNK (p-JNK), ERK1/2 (p-ERK) and p38 (p-p38) phosphorylation status. CONCLUSIONS: These HFD-induced increases in pro-inflammatory cytokine expression levels and NF-κB and MAPKs signaling pathway activation in reproductive organs support the notion that increases of adipocytes resident and inflammatory status are symptomatic of female fertility impairment in obese mice.


Assuntos
Genitália Feminina/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Obesidade/patologia , Animais , Dieta Hiperlipídica , Feminino , Fertilidade/fisiologia , Genitália Feminina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Transdução de Sinais/fisiologia
5.
Antioxidants (Basel) ; 13(8)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39199264

RESUMO

Environmental stressors can induce paternal epigenetic modifications that are a key determinant of the intergenerational inheritance of acquired phenotypes in mammals. Some of them can affect phenotypic expression through inducing changes in tRNA-derived small RNAs (tsRNAs), which modify paternal epigenetic regulation in sperm. However, it is unclear how these stressors can affect changes in the expression levels of tsRNAs and their related endonucleases in the male reproductive organs. We found that Ribonuclease inhibitor 1 (RNH1), an oxidation responder, interacts with ANG to regulate sperm tsRNA generation in the mouse caput epididymis. On the other hand, inflammation and oxidative stress induced by either lipopolysaccharide (LPS) or palmitate (PA) treatments weakened the RNH1-ANG interaction in the epididymal epithelial cells (EEC). Accordingly, ANG translocation increased from the nucleus to the cytoplasm, which led to ANG upregulation and increases in cytoplasmic tsRNA expression levels. In conclusion, as an antioxidant, RNH1 regulates tsRNA generation through targeting ANG in the mouse caput epididymis. Moreover, the tsRNA is an epigenetic factor in sperm that modulates paternal inheritance in offspring via the fertilization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA