Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Small ; : e2403674, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39072991

RESUMO

Semi-solid lithium-ion batteries (SSLIBs) based on "slurry-like" electrodes hold great promise to enable low-cost and sustainable energy storage. However, the development of the SSLIBs has long been hindered by the lack of high-performance anodes. Here the origin of low initial Coulombic efficiency (iCE, typically <60%) is elucidated in the graphite-based semi-solid anodes (in the non-flowing mode) and develop rational strategies to minimize the irreversible capacity loss. It is discovered that Ketjen black (KB), a nanoscale conductive additive widely used in SSLIB research, induces severe electrolyte decomposition during battery charge due to its large surface area and abundant surface defects. High iCEs up to 92% are achieved for the semi-solid graphite anodes by replacing KB with other low surface-area, low-defect conductive additives. A semi-solid full battery (LiFePO4 vs graphite, in the non-flowing mode) is further demonstrated with stable cycle performance over 100 cycles at a large areal capacity of 6 mAh cm-2 and a pouch-type semi-solid full cell that remains functional even when it is mechanically abused. This work demystifies the SSLIBs and provides useful physical insights to further improve their performance and durability.

2.
Anim Biotechnol ; 35(1): 2377209, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39037081

RESUMO

Apoptosis-inducing factor mitochondrion-associated 2 (AIFM2) has been identified as a gene with anti-ferroptosis properties. To explore whether AIFM2 exerts anti-ferroptosis role in yaks (Bos grunniens), we cloned yak AIFM2 gene and analyzed its biological characteristics. The coding region of AIFM2 had 1122 bp and encoded 373 amino acids, which was conserved in mammals. Next, RT-qPCR results showed an extensive expression of AIMF2 in yak tissues. Furthermore, we isolated yak skin fibroblasts (YSFs) and established a bisphenol A (BPA)-induced ferroptosis model to further investigate the role of AIFM2. BPA elevated oxidative stress (reactive oxygen species, ROS) and lipid peroxidation (malondialdehyde, MDA and BODIPY), and reduced cell viability and antioxidant capacity (glutathione, GSH), with the severity depending on the dosage. Of note, a supplement of Ferrostatin-1 (Fer), an inhibitor of ferroptosis, restored the previously mentioned indicators. Subsequently, we constructed an AIFM2 overexpression vector and designed AIFM2 specific interfering siRNAs, which were transfected into YSFs. The results showed that overexpressing AIFM2 alleviated ferroptosis, characterizing by significant changes of cell viability, ROS, BODIPY, MDA and GSH. Meanwhile, interfering AIFM2 aggravated ferroptosis, demonstrating the critical anti-ferroptosis role of the yak AIFM2 gene. This study shed light on further exploring the molecular mechanism of AIFM2 in plateau adaptability.


Assuntos
Compostos Benzidrílicos , Ferroptose , Fibroblastos , Fenóis , Animais , Bovinos , Fenóis/farmacologia , Fenóis/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Ferroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos
3.
Small ; 19(16): e2206740, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670093

RESUMO

All-solid-state sodium metal batteries paired with solid polymer electrolytes (SPEs) are considered a promising candidate for high energy-density, low-cost, and high-safety energy storage systems. However, the low ionic conductivity and inferior interfacial stability with Na metal anode of SPEs severely hinder their practical applications. Herein, an anion-trapping 3D fiber network enhanced polymer electrolyte (ATFPE) is developed by infusing poly(ethylene oxide) matrix into an electrostatic spun fiber framework loading with an orderly arranged metal-organic framework (MOF). The 3D continuous channel provides a fast Na+ transport path leading to high ionic conductivity, and simultaneously the rich coordinated unsaturated cation sites exposed on MOF can effectively trap anions, thus regulating Na+ concentration distribution for constructing stable electrolyte/Na anode interface. Based on such advantages, the ATFPE exhibits high ionic conductivity and considerable Na+ transference number, as well as enhanced interfacial stability. Consequently, Na/Na symmetric cells using this ATFPE possess cyclability over 600 h at 0.1 mA cm-2 without discernable Na dendrites. Cooperated with Na3 V2 (PO4 )3 cathode, the all-solid-state sodium metal batteries (ASSMBs) demonstrate significantly improved rate and cycle performances, delivering a high discharge capacity of 117.5 mAh g-1 under 0.1 C and rendering high capacity retention of 78.2% after 1000 cycles even at 1 C.

4.
Small ; 19(49): e2304187, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37603387

RESUMO

Layered manganese-based oxides (LMOs) are promising cathode materials for sodium-ion batteries (SIBs) due to their versatile structures. However, the Jahn-Teller effect of Mn3+ induces severe distortion of MnO6 octahedra, and the resultant low symmetry is responsible for the gliding of MnO2 layers and then inferior multiple-phase transitions upon Na+ extraction/insertion. Here, hexagonal P2-Na0.643 Li0.078 Mn0.827 Ti0.095 O2 is synthesized through the incorporation of Li and Ti into the distorted orthorhombic P'2-Na0.67 MnO2 to function as a phase-transition-free oxide cathode. It is revealed that Li in both the transition-metal and Na layers enhances the covalency of Mn-O bonds and allows degeneracy of Mn 3d eg orbitals to favor the formation of hexagonal phase, and the high strength of Ti-O bonds reduces the electrostatic interaction between Na and O for suppressed Na+ /vacancy rearrangements. These collectively lead to a whole-voltage-range solid-solution reaction between 1.8 and 4.3 V with a small volume variation of 1.49%. This rewards its excellent cycling stability (capacity retention of 90% after 500 cycles) and rate capability (89 mAh g-1 at 2000 mA g-1 ).

5.
Small ; 19(17): e2206987, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36725320

RESUMO

Na4 MnV(PO4 )3 /C (NMVP) has been considered an attractive cathode for sodium-ion batteries with higher working voltage and lower cost than Na3 V2 (PO4 )3 /C. However, the poor intrinsic electronic conductivity and Jahn-Teller distortion caused by Mn3+ inhibit its practical application. In this work, the remarkable effects of Zr-substitution on prompting electronic and Na-ion conductivity and also structural stabilization are reported. The optimized Na3.9 Mn0.95 Zr0.05 V(PO4 )3 /C sample shows ultrafast charge-discharge capability with discharge capacities of 108.8, 103.1, 99.1, and 88.0 mAh g-1 at 0.2, 1, 20, and 50 C, respectively, which is the best result for cation substituted NMVP samples reported so far. This sample also shows excellent cycling stability with a capacity retention of 81.2% at 1 C after 500 cycles. XRD analyses confirm the introduction of Zr into the lattice structure which expands the lattice volume and facilitates the Na+ diffusion. First-principle calculation indicates that Zr modification reduces the band gap energy and leads to increased electronic conductivity. In situ XRD analyses confirm the same structure evolution mechanism of the Zr-modified sample as pristine NMVP, however the strong ZrO bond obviously stabilizes the structure framework that ensures long-term cycling stability.

6.
Proc Natl Acad Sci U S A ; 117(44): 27195-27203, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33060301

RESUMO

The path toward Li-ion batteries with higher energy densities will likely involve use of thin lithium (Li)-metal anode (<50 µm thickness), whose cyclability today remains limited by dendrite formation and low coulombic efficiency (CE). Previous studies have shown that the solid-electrolyte interface (SEI) of the Li metal plays a crucial role in Li-electrodeposition and -stripping behavior. However, design rules for optimal SEIs are not well established. Here, using integrated experimental and modeling studies on a series of structurally similar SEI-modifying model compounds, we reveal the relationship between SEI compositions, Li deposition morphology, and CE and identify two key descriptors for the fraction of ionic compounds and compactness, leading to high-performance SEIs. We further demonstrate one of the longest cycle lives to date (350 cycles for 80% capacity retention) for a high specific-energy Li||LiCoO2 full cell (projected >350 watt hours [Wh]/kg) at practical current densities. Our results provide guidance for rational design of the SEI to further improve Li-metal anodes.

7.
J Clin Nurs ; 32(7-8): 1125-1134, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35665973

RESUMO

AIMS AND OBJECTIVES: To establish a simple score that enables nurses to quickly, conveniently and accurately identify patients whose condition may change during intrahospital transport. BACKGROUND: Critically ill patients may experience various complications during intrahospital transport; therefore, it is important to predict their risk before they leave the emergency department. The existing scoring systems were not developed for this population. DESIGN: A prospective cohort study. METHODS: This study used convenience sampling and continuous enrolment from 1 January, 2019, to 30 June, 2021, and 584 critically ill patients were included. The collected data included vital signs and any condition change during transfer. The STROBE checklist was used. RESULTS: The median age of the modelling group was 74 (62, 83) years; 93 (19.7%) patients were included in the changed group, and 379 (80.3%) were included in the stable group. The five independent model variables (respiration, pulse, oxygen saturation, systolic pressure and consciousness) were statistically significant (p < .05). The above model was simplified based on beta coefficient values, and each variable was assigned 1 point, for a total score of 0-5 points. The AUC of the simplified score in the modelling group was 0.724 (95% CI: 0.682-0.764); the AUC of the simplified score in the validation group (112 patients) was 0.657 (95% CI: 0.566-0.741). CONCLUSIONS: This study preliminarily established a simplified scoring system for the prediction of risk during intrahospital transport from the emergency department to the intensive care unit. It provides emergency nursing staff with a simple assessment tool to quickly, conveniently and accurately identify a patient's transport risk. RELEVANCE TO CLINICAL PRACTICE: This study suggested the importance of strengthening the evaluation of the status of critical patients before intrahospital transport, and a simple score was formed to guide emergency department nurses in evaluating patients.


Assuntos
Estado Terminal , Enfermagem em Emergência , Humanos , Estudos Prospectivos , Lista de Checagem , Estado de Consciência
8.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958650

RESUMO

Maintaining normal functions of ovarian granulosa cells (GCs) is essential for oocyte development and maturation. The dysfunction of GCs impairs nutrition supply and estrogen secretion by follicles, thus negatively affecting the breeding capacity of farm animals. Impaired GCs is generally associated with declines in Nicotinamide adenine dinucleotide (NAD+) levels, which triggers un-controlled oxidative stress, and the oxidative stress, thus, attack the subcellular structures and cause cell damage. ß-nicotinamide mononucleotide (NMN), a NAD+ precursor, has demonstrated well-known antioxidant properties in several studies. In this study, using two types of ovarian GCs (mouse GCs (mGCs) and human granulosa cell line (KGN)) as cell models, we aimed to investigate the potential effects of NMN on gene expression patterns and antioxidant capacity of both mGCs and KGN that were exposed to hydrogen peroxide (H2O2). As shown in results of the study, mGCs that were exposed to H2O2 significantly altered the gene expression patterns, with 428 differentially expressed genes (DEGs) when compared with those of the control group. Furthermore, adding NMN to H2O2-cultured mGCs displayed 621 DEGs. The functional enrichment analysis revealed that DEGs were mainly enriched in key pathways like cell cycle, senescence, and cell death. Using RT-qPCR, CCK8, and ß-galactosidase staining, we found that H2O2 exposure on mGCs obviously reduced cell activity/mRNA expressions of antioxidant genes, inhibited cell proliferation, and induced cellular senescence. Notably, NMN supplementation partially prevented these H2O2-induced abnormalities. Moreover, these similar beneficial effects of NMN on antioxidant capacity were confirmed in the KGN cell models that were exposed to H2O2. Taken together, the present results demonstrate that NMN supplementation protects against H2O2-induced impairments in gene expression pattern, cell cycle arrest, and cell death in ovarian GCs through boosting NAD+ levels and provide potential strategies to ameliorate uncontrolled oxidative stress in ovarian GCs.


Assuntos
Peróxido de Hidrogênio , Mononucleotídeo de Nicotinamida , Feminino , Humanos , Camundongos , Animais , Mononucleotídeo de Nicotinamida/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células da Granulosa/metabolismo , Pontos de Checagem do Ciclo Celular
9.
Chem Soc Rev ; 50(2): 1138-1187, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33245736

RESUMO

High temperature proton exchange membrane fuel cells (HT-PEMFCs) are one type of promising energy device with the advantages of fast reaction kinetics (high energy efficiency), high tolerance to fuel/air impurities, simple plate design, and better heat and water management. They have been expected to be the next generation of PEMFCs specifically for application in hydrogen-fueled automobile vehicles and combined heat and power (CHP) systems. However, their high-cost and low durability interposed by the insufficient performance of key materials such as electrocatalysts and membranes at high temperature operation are still the challenges hindering the technology's practical applications. To develop high performance HT-PEMFCs, worldwide researchers have been focusing on exploring new materials and the related technologies by developing novel synthesis methods and innovative assembly techniques, understanding degradation mechanisms, and creating mitigation strategies with special emphasis on catalysts for oxygen reduction reaction, proton exchange membranes and bipolar plates. In this paper, the state-of-the-art development of HT-PEMFC key materials, components and device assembly along with degradation mechanisms, mitigation strategies, and HT-PEMFC based CHP systems is comprehensively reviewed. In order to facilitate further research and development of HT-PEMFCs toward practical applications, the existing challenges are also discussed and several future research directions are proposed in this paper.

10.
Small ; 17(10): e2005383, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33538089

RESUMO

Utilizing electricity and heat from renewable energy to convert small molecules into value-added chemicals through electro/thermal catalytic processes has enormous socioeconomic and environmental benefits. However, the lack of catalysts with high activity, good long-term stability, and low cost strongly inhibits the practical implementation of these processes. Oxides with exsolved metal nanoparticles have recently been emerging as promising catalysts with outstanding activity and stability for the conversion of small molecules, which provides new possibilities for application of the processes. In this review, it starts with an introduction on the mechanism of exsolution, discussing representative exsolution materials, the impacts of intrinsic material properties and external environmental conditions on the exsolution behavior, and the driving forces for exsolution. The performances of exsolution materials in various reactions, such as alkane reforming reaction, carbon monoxide oxidation, carbon dioxide utilization, high temperature steam electrolysis, and low temperature electrocatalysis, are then summarized. Finally, the challenges and future perspectives for the development of exsolution materials as high-performance catalysts are discussed.

11.
J Cell Biochem ; 120(3): 4214-4224, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30520138

RESUMO

Chronic intermittent hypoxia (CIH) in obstructive sleep apnea causes damage of aortic endothelial cells, which predisposes the development of many cardiovascular diseases. Recently, both altered expression of microRNAs (miRNAs) and impaired autophagy were found to be associated with endothelial cell dysfunction in CIH. However, the exact molecular regulatory pathway has not been determined. Here, we address this question. In a mouse model of CIH, we detected significant upregulation of miR-30a, a miRNA that targets 3'-untranslated region of autophagy-associated protein 6 (Beclin-1) messenger RNA (mRNA) for suppressing the protein translation, which subsequently attenuated the endothelial cell autophagy against cell death. Indeed, unlike Beclin-1 mRNA, the Beclin-1 protein in endothelial cells did not increase after CIH. Suppression of miR-30a by expression of antisense of miR-30a significantly increased Beclin-1 levels to enhance endothelial cell autophagy in vitro and in vivo, which improved endothelial cell survival against CIH. Together, these data suggest that endothelial cell autophagy in CIH may be attenuated by miR-30a-mediated translational control of Beclin-1 as an important cause of endothelial cell dysfunction and damage.


Assuntos
Autofagia/genética , Proteína Beclina-1/metabolismo , Células Endoteliais/metabolismo , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biossíntese de Proteínas , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Hipóxia Celular , Sobrevivência Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Transdução Genética , Transfecção
12.
Small ; 14(21): e1704523, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29667305

RESUMO

O3-type NaNi1/3 Fe1/3 Mn1/3 O2 (NaNFM) is well investigated as a promising cathode material for sodium-ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali-layer distance inside the layer structure of NaNFM may benefit Na+ diffusion. Herein, the effect of Ca-substitution is reported in Na sites on the structural and electrochemical properties of Na1-x Cax/2 NFM (x = 0, 0.05, 0.1). X-ray diffraction (XRD) patterns of the prepared Na1-x Cax/2 NFM samples show single α-NaFeO2 type phase with slightly increased alkali-layer distance as Ca content increases. The cycling stabilities of Ca-substituted samples are remarkably improved. The Na0.9 Ca0.05 Ni1/3 Fe1/3 Mn1/3 O2 (Na0.9 Ca0.05 NFM) cathode delivers a capacity of 116.3 mAh g-1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3-P3-P3-O3 sequence of Na0.9 Ca0.05 NFM cathode during cycling. Compared to NaNMF, the Na0.9 Ca0.05 NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na0.9 Ca0.05 NFM makes it a promising material for practical applications in sodium-ion batteries.

13.
J Am Chem Soc ; 139(4): 1384-1387, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28076947

RESUMO

Proper understanding of the major limitations of current catalysts for oxygen reduction reaction (ORR) is essential for further advancement. Herein by studying representative Pt and non-Pt ORR catalysts with a wide range of redox potential (Eredox) via combined electrochemical, theoretical, and in situ spectroscopic methods, we demonstrate that the role of the site-blocking effect in limiting the ORR varies drastically depending on the Eredox of active sites; and the intrinsic activity of active sites with low Eredox have been markedly underestimated owing to the overlook of this effect. Accordingly, we establish a general asymmetric volcano trend in the ORR activity: the ORR of the catalysts on the overly high Eredox side of the volcano is limited by the intrinsic activity; whereas the ORR of the catalysts on the low Eredox side is limited by either the site-blocking effect and/or intrinsic activity depending on the Eredox.

14.
J Am Chem Soc ; 139(23): 7893-7903, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28535684

RESUMO

Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nb in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt-Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt-O interactions improve the ORR activity by shortening the Pt-Pt bond distance. Pt donates electrons to NbOx in both Pt-Nb and Pt-O cases. The resultant electron eficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.


Assuntos
Carbono/química , Nióbio/química , Óxidos/química , Oxigênio/química , Platina/química , Catálise , Técnicas Eletroquímicas , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
15.
Angew Chem Int Ed Engl ; 56(49): 15594-15598, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29044864

RESUMO

Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt-Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data, which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate-determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.

16.
Small ; 12(38): 5281-5287, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27490256

RESUMO

Si/C yolk-shell structures have been developed to deal with the major issues associated with Si anodes: the huge volume changes and the low electrical conductivity. However, the fabrication process often involves expensive starting materials and/or simultaneously generates insulated SiC, which is harmful for Si anodes. Here, silica wastes from the optical fibers industry are used as starting materials to prepare high performance Si/C materials with Si@void@C yolk-shell structure via a rational designed Al2 O3 coating assisted magnesiothermic process. The obtained yolk-shell Si@void@C materials have a capacity of more than 1450 mA h g-1 after 100 cycles at 0.4 A g-1 . Thanks to the easily coated and removed Al2 O3 layer, the general formation of SiC can be avoided which is beneficial for improving the rate performances, and a capacity of ≈800 mA h g-1 is still kept after 200 cycles at a high rate of 10 A g-1 with a low capacity loss of 0.08% per cycle.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39091654

RESUMO

Background: Assessing the perioperative outcomes of pancreaticoduodenectomy (PD) based solely on individual complications is not comprehensive, and the association between perioperative outcomes and the long-term prognosis of individuals diagnosed with pancreatic ductal adenocarcinoma (PDAC) remains uncertain. Our study is designed to evaluate the impact of a novel composite indicator, textbook outcomes (TO), on the long-term prognosis of patients undergoing PD for PDAC. Methods: This study conducted a retrospective analysis of 139 patients who underwent PD for pathologically confirmed PDAC at our hospital between January 2018 and December 2021. After applying exclusion criteria, a total of 111 patients were included in the subsequent analysis. These patients were categorized into two groups: the non-TO group (n=42) and the TO group (n=69). The Kaplan-Meier survival curve was employed to describe the relationship between TO and disease-free survival (DFS) and overall survival (OS). Cox regression was employed to assess the impact of achieving TO on long-term survival. Logistic regression was employed to investigate the risk factors affecting the achievement of TO. Results: Out of the 111 PDAC patients, 69 (62.2%) achieved TO following PD. The achievement of TO significantly improved the OS of PDAC patients [P=0.03; hazard ratio (HR) =0.60; 95% confidence interval (CI): 0.37-0.83]. Cox regression analysis indicated that achieving TO was a protective factor for OS (P=0.04; HR =4.08; 95% CI: 1.07-15.61). Logistic regression analysis indicated that high amylase in drainage fluid on the third day after surgery (>1,300 U/L) was detrimental to achieve TO [odds ratio (OR) =0.10; 95% CI: 0.02-0.58; P=0.01], longer surgery durations (≥6.25 hours) was detrimental to achieve TO (OR =0.19; 95% CI: 0.06-0.54; P=0.002), and soft pancreatic texture was detrimental to achieve TO (OR =0.31; 95% CI: 0.10-0.93, P=0.04). Conclusions: Achievement of TO significantly improves the OS of PDAC patients and has the potential to serve as a robust prognostic indicator. Looking ahead, it is highly necessary for TO to become a standard surgical quality control measure in hospitals.

18.
J Anim Sci ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39285681

RESUMO

Zearalenone (ZEN), a mycotoxin from Fusarium fungi, impairs fertility and milk production in female animals, however, the mechanisms remain poorly understood. Using the bovine mammary epithelial cells (MAC-T) as the model, this study investigated the impacts of ZEN on programmed cell death (PCD) and milk fat synthesis, and explored the underlying mechanism. We found that 10 ng/mL prolactin (PRL) notably enhanced the differentiation of MAC-T cells, promoting the expression of genes related to the synthesis of milk fat, protein, and lactose. Next, the toxic effects of different doses of ZEN on the differentiated MAC-T with PRL treatment were determined. 10 µM and 20 µM ZEN significantly reduced cell viability, induced oxidative stress, and triggered PCD (e.g. apoptosis and necrosis). Notably, ZEN exposure downregulated the mRNA/protein levels of critical factors involving in milk fat synthesis by disrupting the AKT-mTOR-PPARγ-ACSL4 pathway. Interestingly, melatonin (MT), known for its antioxidant properties, protected against the above ZEN-induced effects by enhancing the binding of PPARγ to the promoter regions of ACSL4, which led to the upregulated expression of ACSL4 gene. These results underscored the potential of MT to mitigate the adverse effects of ZEN on mammary cells, highlighting a way for potential therapeutic intervention.

19.
RSC Adv ; 14(41): 30102-30109, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39315018

RESUMO

Silica (SiO2) shows promise as anode material for lithium-ion batteries due to its low cost, comparable lithium storage discharge potential and high theoretical capacity (approximately 1961 mA h g-1). However, it is plagued by issues of low electrochemical activity, low conductivity and severe volume expansion. To address these challenges, we initially coat SiO2 with CoO, followed by introducing SiO2@CoO into graphene sheets to fabricate an anode composite material (SiO2@CoO/GS) with uniformly dispersed particles and a 3D graphene wrapped yolk-shell structure. The coating of CoO on SiO2 converted the negative surface charge of SiO2 to positive, enabling effective electrostatic interactions between SiO2@CoO and graphene oxide sheets, which provided essential prerequisites for synthesizing composite materials with uniformly dispersed particles and good coating effects. Furthermore, the Co-metal formed during the charge-discharge process can act as a catalyst and electron transfer medium, activating the lithium storage activity of SiO2 and enhancing the conductivity of the electrode, conclusively achieving a higher lithium storage capacity. Ultimately, due to the activation of SiO2 by Co-metal during cycling and the excellent synergistic effect between SiO2@CoO and graphene, SiO2@CoO/GS delivers a high reversible capacity of 738 mA h g-1 after 500 cycles at 200 mA g-1. The product also demonstrates excellent rate performance with a reversible capacity of 206 mA h g-1 at a high specific current of 12.8 A g-1. The outstanding rate performance of SiO2@CoO/GS may be ascribed to the pseudo-capacitive contribution at high specific current upon cycling.

20.
J Colloid Interface Sci ; 678(Pt C): 608-618, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39305628

RESUMO

Unstable cathode/electrolyte interphase and severe interfacial side reaction have long been identified as the main cause for the failure of layered oxide cathode during fast charging and long-term cycling for rechargeable sodium-ion batteries. Here, we report a superionic conductor (Na3V2(PO4)3, NVP) bonding surface strategy for O3-type layered NaNi1/3Fe1/3Mn1/3O2 (NFM) cathode to suppress electrolyte corrosion and near-surface structure deconstruction, especially at high operating potential. The strong bonding affinity at the NVP/NFM contact interface stabilizes the crystal structure by inhibiting surface parasitic reactions and transition metal dissolution, thus significantly improving the phase change reversibility at high desodiation state and prolonging the lifespan of NFM cathode. Due to the high-electron-conductivity of NFM, the redox activity of NVP is also enhanced to provide additional capacity. Therefore, benefiting from the fast ion transport kinetics and electrochemical Na+-storage activity of NVP, the composite NFM@NVP electrode displays a high initial coulombic efficiency of 95.5 % at 0.1 C and excellent rate capability (100 mAh g-1 at 20 C) within high cutoff voltage of 4.2 V. The optimized cathode also delivers preeminent cyclic stability with ∼80 % capacity retention after 500 cycles at 2 C. This work sheds light on a facile and universal strategy on improving interphase stability to develop fast-charging and sustainable batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA